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Background: Traumatic brain injury (TBI) is a prevalent neurological disorder associated with significant public health burdens and 
long-term risks, including neurodegenerative diseases such as Parkinson’s disease (PD). Emerging evidence suggests a strong link 
between moderate to severe TBI and an elevated risk of PD, though the underlying mechanisms remain poorly understood.
Materials and Methods: Common differentially expressed genes (DEGs) were identified in GEO datasets of patients with traumatic 
brain injury (TBI) and Parkinson’s disease (PD). Further analyses, including GO and KEGG pathway enrichment, protein-protein 
interaction (PPI) network construction, hub gene identification, as well as miRNA and transcription factor prediction and drug 
candidate screening, were conducted. Subsequently, the expression of hub genes was validated using additional TBI- and PD-related 
GEO datasets and the Comparative Toxicogenomics Database (CTD). Finally, the expression of hub genes was further validated in 
a mouse model of TBI induced by controlled cortical impact (CCI).
Results: Shared transcriptional signatures between TBI and PD were uncovered, highlighting overlapping molecular networks and 
pathways. The glutathione peroxidase 3 (GPX3) gene emerged as a pivotal hub gene, with its expression significantly altered in both 
TBI and PD datasets.
Conclusion: This study underscores the critical role of GPX3 in the molecular intersection of TBI and PD, suggesting it as a novel 
and potential therapeutic target, offering new insights into potential therapeutic strategies.
Keywords: traumatic brain injury, Parkinson’s disease, bioinformatics, oxidative stress, mitochondrial dysfunction, neurodegenerative 
diseases

Introduction
Traumatic brain injury (TBI) has the highest incidence rate among common neurological disorders and represents 
a significant public health burden.1–3 It is also a leading cause of neurological disability, with a substantial risk of 
neurological and neuropsychiatric complications, including in cases classified as mild or moderate.4 Increasingly, TBI is 
recognized not only as an acute condition but also as a chronic disease with long-term consequences, including 
a heightened risk of late-onset neurodegenerative disorders.5,6 Parkinson’s disease (PD) is the second most prevalent 
neurodegenerative disorder, affecting 2–3% of the population over the age of 65, with its prevalence projected to double 
by 2050.7,8 PD is currently described as a multisystem neurodegenerative disorder, simultaneously impacting the central 
nervous system (CNS), enteric nervous system (ENS), autonomic nervous system, adaptive immune system, and 
gastrointestinal (GI) tract. Clinically, it is characterized by a spectrum of motor and non-motor symptoms.9 The 
relationship between TBI and PD has garnered increasing attention, particularly in cases of moderate to severe TBI, 
which have been identified as a risk factor for all-cause dementia and Parkinson’s disease.10–12 Two of the largest 
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administrative and population-based cohort studies to date reported that the risk of clinical Parkinson’s disease (PD) is at 
least 1.8 times greater in individuals with a history of moderate/severe traumatic brain injury (TBI) compared to those 
without TBI, with an average follow-up of 4.6 years, after adjusting for various demographic, medical, and psychiatric 
factors.13,14

However, the mechanisms underlying the increased risk of Parkinson’s disease following TBI remain poorly under-
stood. Reactive oxygen species (ROS) are chemically reactive molecules, including free radicals such as superoxide 
(O2•⁻) and hydroxyl (•OH), and non-radicals such as hydrogen peroxide (H2O2) and singlet oxygen (¹O2), all derived 
from molecular oxygen. At low levels, ROS play a key role in regulating normal physiological processes, including the 
activation of the innate immune system.15,16 ROS not only cause DNA damage and drive tumorigenesis but also 
accelerate its progression.15,17,18 Elevated levels of H2O2 can trigger cell cycle arrest or apoptosis. Certain anticancer 
agents act by generating ROS, which induce cell death through apoptotic signaling pathways.18 However, at excessively 
high pathological levels, ROS contribute to the development of cardiovascular diseases and other conditions.17,19,20 The 
cellular system relies on antioxidant enzymes as its first line of defense against ROS. Glutathione peroxidase (GPX), an 
essential enzyme, plays a crucial role in the detoxification of hydrogen peroxide. Within cells, hydrogen peroxide is 
catalyzed by catalases and GPX into water.21,22 Glutathione Peroxidases, discovered by Gordon C. Mills in 1957, are 
a family of enzymes vital for the removal of hydrogen peroxide generated endogenously.19,23 They also catalyze the 
conversion of glutathione (GSH) to its oxidized form, glutathione disulfide(GSSG)21. Among the reported GPxs, GPx3 is 
a homotetramer that can eliminate a wide range of complex hydroperoxides. Beyond its roles in the cytosol and 
mitochondria, GPx3 also circulates in plasma.24 GPx3 presence helps mitigate inflammation within the tumor 
microenvironment.25 Additionally, reduced GPx3 protein levels have been observed in inflammatory breast cancer.26 

However, there is a paucity of research on GPX3 in the contexts of traumatic brain injury and Parkinson’s disease.
In recent years, advancements in bioinformatics and the use of genomic microarrays have made bioinformatics 

analysis an indispensable tool in biomedical research. Common transcriptional patterns can offer new insights into the 
shared etiology of TBI and PD. In this study, we obtained two key microarray datasets (GSE104687, GSE7621) from the 
GEO database. The two GEO datasets utilized in the initial analysis are derived from human brain samples of traumatic 
brain injury (TBI) and Parkinson’s disease (PD), offering greater reliability and translational potential compared to the 
mouse-derived GEO datasets.

We conducted comprehensive bioinformatics and enrichment analyses to identify differentially expressed genes and 
their functions in TBI and PD. Based on these analyses, we identified a shared profile of genes, molecular networks, and 
signaling pathways between TBI and PD, with key genes in these profiles subsequently validated.

Materials and Methods
Data Download
The TBI dataset (GSE104687) was retrieved from the NCBI GEO public database.27 This dataset includes 376 samples 
from 107 brains, encompassing cortical grey matter, white matter, and hippocampal tissue. The GSE7621 dataset, 
associated with Parkinson’s disease, was also downloaded, containing a total of 64 transcriptomic datasets, with 9 
from normal samples and 16 from Parkinson’s disease samples.28 The quality control and batch correction were 
performed using the PCA function and the ComBat function from the sva R package(version 3.52.0).

Differentially expressed genes (DEGs) were identified using the limma R package(version 3.60.4), with the screening 
criteria set as p-value < 0.05 and |logFC| > 1. Additionally, the GSE150696 and GSE155063 datasets were downloaded as 
validation sets for the identified hub genes.29,30

GO and KEGG Enrichment Analysis
The DEGs were then analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis to identify the biological functions and signaling pathways involved in disease onset and 
progression.31,32 In the enrichment analysis, FDR is used to correct the results, and p < 0.05 is considered significant.
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Network Analysis and Hub Genes Identification
The common differentially expressed genes (DEGs) were used to construct the protein-protein interaction (PPI) network 
via the STRING database (https://string-db.org/),33 with results visualized using Cytoscape (version 3.10.1). Hub genes 
and essential networks were identified using the CytoHubba plugins in Cytoscape. CytoHubba is a plugin used to identify 
and prioritize hub genes within a network based on various centrality measures, such as degree, closeness, and 
betweenness centrality. It helps to highlight the most influential genes in biological networks, which may be critical 
for understanding cellular processes or disease mechanisms.

Additionally, the GeneMANIA database (https://genemania.org/) was employed to analyze the gene network of the 
identified hub genes.34 GeneMANIA is valuable for identifying gene interactions, understanding gene functions, and 
prioritizing genes for further study. It is particularly useful for exploring pathways in disease research and biomarker 
discovery. In this study, NetworkAnalyst 3.0 was utilized to identify the TF-gene network and the TF-miRNA co- 
regulatory network.35

Obtainment of Potential Key Genes for Traumatic Brain Injury and Parkinson’s Disease
The Comparative Toxicogenomics Database (CTD, http://ctdbase.org/) provides data on interfaces between chemicals, 
genetic products, biological outcomes, and diseases and contributes to the study of potential mechanisms of pharmaceu-
tical action and disease-related environmental exposures.36 Using the CTD database, the associations between hub genes 
and the risk of the onset of brain injury, Parkinson’s disease, neurodegenerative diseases, were analyzed.

Potential Therapeutic Drugs Associated With Hub Genes
A The Connectivity Map (CMap) database (https://clue.io/) is a promising tool for drug screening, capable of predicting 
molecularly targeted drugs based on differential gene expression (DEG).37 The CMap database uses cell expression 
profile data, which has been processed with 164 drugs and small molecule compounds, along with overexpression or 
gene knockout tools. It utilizes the L1000 analysis platform to investigate the relationships among drugs, small 
molecules, genes, and disease states. In this study, we leveraged gene expression profiling in conjunction with the 
CMap database to predict potential chemical drugs for treating traumatic brain injury (TBI) and Parkinson’s disease (PD). 
Our findings suggested that targeting the functions of specific genes could offer therapeutic benefits. Notably, the 
expression profiles of these genes were found to be the inverse of the disease’s characteristic expression profiles, with 
negative enrichment scores indicating a potential therapeutic effect.

Single-Cell Sequencing Dataset Analysis
The GSE269748 dataset, which pertains to traumatic brain injury (TBI), was utilized for this study. Data from day 7 post- 
TBI were selected for analysis. This single-cell dataset contains 10,312 cells. Initially, the dataset was processed using 
the Seurat package(version 5.1.0), followed by t-SNE analysis to visualize the spatial relationships between different cell 
clusters.38 A final resolution of 0.4 was chosen after evaluating cluster stability, clustering patterns, and the top marker 
genes. Marker genes for each cell subtype were identified through the FindAllMarkers function, which enabled the 
extraction of relevant gene profiles from the single-cell expression data. Finally, cell type annotation was performed using 
the GPTCelltype R package(version 1.0.1),39 which helped in categorizing the different cell populations in the dataset.

Animals and Experimental Design
Adult male C57BL/6 mice (8–10 weeks old, weighing 23–27 grams) were obtained from Shanghai Jihui Laboratory 
Animal Care Co., Ltd. The mice were housed under pathogen-free conditions in individually ventilated cages (IVC), with 
a stable and controlled environment maintaining appropriate temperature and humidity levels. A 12-hour light–dark cycle 
was observed, and mice had ad libitum access to both food and water. Prior to experimentation, the mice were allowed to 
acclimate to their environment for a minimum of 3 days. The study was approved by the Animal Ethics Committee of the 
Department of Laboratory Animal Science, Fudan University (Approval number: 2021JS −342). Mice were randomly 
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assigned to two groups: the sham-operated group (sham) and the traumatic brain injury (TBI) group. The sham group 
underwent a mock surgery, while the TBI group underwent the traumatic brain injury modeling procedure.

In the CCI model, the sample size for the TBI group and the sham group is 4. Humane care was provided for all 
animals in accordance with the criteria described in the Guide for the Care and Use of Laboratory Animals (National 
Institutes of Health publication 86–23, revised 2011).

Mouse Model of Traumatic Brain Injury
The traumatic brain injury (TBI) mouse model was induced using a controlled cortical impact (CCI) technique as 
previously described.40 This model generally avoids postoperative mortality in mice. Mice were anesthetized, positioned 
securely, and their skulls were exposed. The site for CCI was marked 2 mm lateral to the midline and 0.5 mm posterior to 
the bregma. A consistent right-side craniotomy was performed using a skull drill to create a cranial window approxi-
mately 4 mm in diameter. The brain tissue was impacted using a cortical impactor device (TBI 0310, Precision Systems 
and Instrumentation) fitted with a 3 mm flat-tip impactor head, following specified parameters: a velocity of 3.5 m/s, an 
impact depth of 1.5 mm, and a duration of 150 ms. Following the CCI procedure, the scalp was carefully sutured, 
disinfected, and the mice were placed on a heating pad to stabilize body temperature until they had fully emerged from 
anesthesia. Mice in the sham group received the same surgical procedures except for the CCI.

Immunofluorescence
Anesthetized mice were transcardially perfused with PBS and 4% paraformaldehyde to fix the brain tissue. The brains 
were then immersed in 4% paraformaldehyde and 20% and 30% sucrose solutions for fixation and dehydration. Coronal 
sections of 25 μm were cut using a freezing microtome (HM525NX, ThermoFisher, USA). The sections were washed 
and blocked with 10% goat or donkey serum for 1 hour.Subsequently, the brain sections were incubated overnight at 4°C 
with the following primary antibodies: anti-Gpx3 (1:1000, ab256470, abcam) and anti-Iba1 (1:1000, ab283346, abcam). 
The next day, after washing, fluorescently labeled secondary antibodies were added: Goat Anti-Rabbit IgG H&L (Alexa 
Fluor® 594, ab150080, 1:200, abcam) and Goat Anti-Rat IgG H&L (Alexa Fluor® 647, ab150159, 1:200, abcam), and 
incubated in the dark for 1 hour at room temperature. Finally, the sections were washed three times, and DAPI was added 
to stain the nuclei, followed by observation under a fluorescence microscope.

For quantification of relative fluorescent intensity in individual neurons, all images were acquired using the same 
parameters (laser power and pinhole sizes). Images were first exported from the NIS-Elements Viewer 5.21 (Zeiss) as tif 
and then processed in ImageJ. The antibodies used have been validated in mice. The obtained immunofluorescence 
images were quantitatively analyzed using ImageJ, with the average fluorescence intensity of the sham group used as the 
normalization reference. Immunofluorescence images were quantitatively analyzed using ImageJ, normalizing the results 
to the average fluorescence intensity of the sham group.

Statistical Analysis
Statistical analysis was carried out using R language (version 4.4) and GraphPad Prism (version 3.10.1). Statistical 
analysis was performed based on the normality and homogeneity of variance of the measurement data. For two groups, 
either the unpaired t-test or the Mann–Whitney U-test was employed, while for multiple groups, One-way analysis of 
variance (ANOVA) or the Kruskal–Wallis test was used. All statistical tests were two-sided at a significance threshold 
of 0.05.

Results
Identification of DEGs in GSE104687 and GSE7621
The workflow of this study is shown in Figure 1. Utilizing data from the NCBI GEO database, we obtained the Series Matrix File 
for GSE104687, which focuses on traumatic brain injury. This dataset includes 376 samples from 107 individual brains, 
encompassing cortical grey matter, white matter, and the hippocampus. Differentially expressed genes (DEGs) between the 
two sample groups were identified using the limma package, with a significance threshold of a p-value < 0.05 and |logFC| > 1. 
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A total of 912 DEGs were identified, including 474 upregulated and 438 downregulated genes (Figure 2A and C). Next, we 
obtained the Series Matrix File for GSE7621, related to Parkinson’s disease. This dataset comprised 64 transcriptome samples: 9 
from normal controls and 16 from PD patients. The limma program was again employed to calculate differences between the 
groups, yielding a total of 718 DEGs—319 upregulated and 399 downregulated—under the conditions of a p-value threshold of 
< 0.05 and |log FC| > 1 (Figure 2B and D).

GO and KEGG Enrichment Analysis of DEGs in TBI and PD
We conducted a pathway enrichment analysis on the DEGs from these two datasets. The findings revealed that the 912 
DEGs in GSE104687 were primarily enriched in ribosomal pathways, mitochondrial activation, amino acid metabolism, 
and pathways associated with neurodegenerative diseases (Figure 3A–C). The 718 DEGs of GSE7621 were mainly 
enriched in pathways linked to neuronal activity, mitochondrial activation, immune cell infiltration and differentiation, as 
well as the PI3K-Akt signaling pathway (Figure 3D–F).

Identification and Pathway Analysis of Co-Expressed DEGs in TBI and PD
These differentially expressed genes (DEGs) were analyzed using a Venn diagram, with exclusion of DEGs exhibiting 
opposite expression trends, resulting in a total of 20 common DEGs identified (Figure 4A–C), including 10 upregulated 
and 10 downregulated genes.

The ten upregulated genes identified are ANGPT2, COL9A1, CREBBP, NCF4, CXCR4, MAFF, CLDN15, NPHP3, 
PLCXD1, and TEX29. The ten downregulated genes identified are DCC, GPX3, HBA2, RBM3, EBP, PITHD1, 
SLC12A8, RERG, DPH6, and C2orf80.

The upregulated genes were primarily enriched in hypoxia-related pathways, with CXCR4, CREBBP, and ANGPT2 
playing key roles (Figure 4D). In contrast, the downregulated genes were mainly enriched in pathways related to 
hydrogen peroxide catabolism, hydrogen peroxide metabolism, and cellular oxidant detoxification, with GPX3 and 
HBA2 serving as key contributors to these pathways (Figure 4E and F).

Figure 1 Study flowchart. Created in BioRender. Y, (W) (2024) https://BioRender.com/r08a794.

Journal of Inflammation Research 2025:18                                                                                          https://doi.org/10.2147/JIR.S506891                                                                                                                                                                                                                                                                                                                                                                                                   1915

Wang et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://BioRender.com/r08a794


Protein-Protein Interaction Network Analysis and Hub Gene Identification
The 20 common DEGs were inputted into STRING to construct the PPI network, and the generated file was imported 
into Cytoscape for visualization (Figure 5A and B). The cytoNCA plugin was used to identify key genes within 

Figure 2 Identification of DEGs in GSE104687 and GSE7621. (A) Heatmap of DEGs in TBI(GSE104687). (B) Heatmap of DEGs in PD(GSE7621). (C)Volcano map DEGs in 
TBI(GSE104687). (D)Volcano map of DEGs in PD(GSE7621).
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Figure 3 GO and KEGG enrichment pathway analysis of TBI and PD DEGs. (A) Heatmap of GO pathways enriched in GSE104687 downregulated genes. (B) Heatmap of 
GO pathways enriched in GSE104687 upregulated genes. (C) Dotplot of KEGG pathways enriched in GSE104687 DEGs. (D) Heatmap of GO pathways enriched in GSE7621 
downregulated genes. (E) Heatmap of GO pathways enriched in GSE7621upregulated genes. (F) Dotplot of KEGG pathways enriched in GSE7621 DEGs. In the GO 
enrichment analysis heatmap, rows represent different cellular structures or pathways, columns represent different genes, and colors indicate the fold change of gene 
expression.
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Figure 4 Identification and pathway analysis of co-expressed DEGs in GSE104687 and GSE7621. (A)Venn diagrams identify co-upregulated genes in GSE104687 and 
GSE7621. (B) KEGG enrichment pathways enriched in co-upregulated genes. (C) GO Enrichment network of co-upregulated genes. (D)Venn diagrams identify co- 
downregulated genes in GSE104687 and GSE7621. (E) KEGG enrichment pathways enriched in co-downregulated genes. (F) GO Enrichment network of co-downregulated 
genes.
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a subnetwork consisting of 9 nodes and 12 edges, as depicted in Figure 4. The genes involved in this module were GPX3, 
NCF4, CXCR4, CREBBP, ANGPT2, MAFF, RERG, HBA2, and CLDN15. GeneMANIA was utilized to construct an 
extended gene network. Gene functional annotation revealed that these hub genes are associated with hydrogen peroxide 
metabolism, oxidoreductase activity, and antioxidant function (Figure 5C).

Figure 5 Protein-Protein Interaction (PPI) Network Analysis and Hub Gene Identification. (A) PPI network for common DEGs shared by TBI and PD. Blue nodes represent 
shared DEGs. (B) A key cluster of 15 genes was selected using the CytoNCA plugin in Cytoscape. The color of each node represents its Subgraph Centrality, with larger 
values represented by red and smaller values by yellow.(C) Gene network and functional analysis of hub genes were performed using GeneMANIA. The inner circle 
represents hub genes, while the outer circle represents the corresponding reciprocal genes. Colors of nodes represent gene function annotations, corresponding to GO 
terms enriched in the network. Edge colors represent interactions based on co-expression, physical interactions, co-localization, shared protein domains, or predicted 
interactions.
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Transcription Factor-Hub Gene Network and miRNA-Hub Gene Coregulatory 
Network
The identification of common DEGs in the TF-gene and TF-miRNA co-regulatory networks was carried out using 
NetworkAnalyst 3.0. This network consists of 8 seeds, 145 nodes, and 180 edges (Figure 6A). The betweenness of each 
node was calculated using CytoHubba, resulting in a network of the top 20 nodes ranked by betweenness (Figure 6B). 
Within the network of TF-gene interactions, GPX3, MAFF, and CLDN15 exhibited extensive connections with other 
transcription factors (TFs). Among the TFs, WRNA1, ZFP37, and IKZF1 demonstrated the highest activity within the 
TF-gene interaction network. Subsequently, we constructed a TF-miRNA coregulatory network to predict interactions 
among shared DEGs, TFs, and miRNAs. The miRNAs most closely associated with TFs and hub genes are miR-548-3p, 
miR-653, miR-543, and miR-340 (Figure 6C).

Prediction of Candidate Drugs for TBI-Related Parkinson’s Disease
To identify potential therapeutic agents for TBI-related Parkinson’s disease, the 20 hub DEGs and associated transcrip-
tion factors were submitted to the cMAP database. Drug candidates were ranked by absolute enrichment score (Table 1). 
The analysis showed that Necrostatin-1, JTE-907, rhapontin, rucaparib, nimetazepam, RHO-kinase inhibitor III, HA-14- 
1, liothyronine, alimemazine, and PD-173074 were the top 10 candidate drugs. These agents represent promising 
candidates for the treatment of TBI-related Parkinson’s disease.

Dataset Validation of Hub Genes
The Comparative Toxicogenomics Database (CTD) is a resource that explores relationships between genes, diseases, and 
environmental chemicals, providing curated data on gene-chemical and gene-disease interactions. The CTD database was 
used to analyze associations between hub DEGs and conditions like brain injury, Parkinson’s disease, and other 
neurodegenerative diseases. The results demonstrated that GPX3, CXCR4, CREBBP, and ANGPT2 had the strongest 
association with brain injury, while GPX3 showed the highest correlation with Parkinson’s disease and other neurode-
generative diseases (Figure 7A).

To further validate the hub genes, we used four CytoHubba algorithms (MCC, MNC, degree, and betweenness) in 
Cytoscape and confirmed them using the GEO database. Through Venn diagram analysis, we found that GPX3, CXCR4, 
and CREBBP consistently ranked in the top five across all four algorithms (Figure 7B).

We analyzed the mouse TBI dataset GSE150696. Results indicated significant differences in the expression levels of 
Gpx3 and Crebbp between the injured and uninjured hemispheres of TBI mice (Figure 7C–E). For validation in human 
Parkinson’s disease, we used the GSE155063 dataset, where GPX3 and CXCR4 expression levels were significantly 
altered compared to the control group (Figure 7F–H).

In summary, GPX3 emerged as the top-performing gene, both in terms of CTD database scores and validation within 
the GEO dataset.

Overview of Gpx3 Expression in Single-Cell RNA-Seq Dataset and Experimental 
Validation of Gpx3
We obtained the single-cell dataset GSM8326363 from GSE269748, which is derived from the cortex of a mouse on day 
7 post-TBI. Single-cell analysis was performed using the Seurat package, with T-SNE used for visualization. Clusters 
were annotated with the GPTcelltype R package, categorizing cells into eight types: endothelial cells, microglia, 
macrophages, ependymal cells, NK and T cells, glial cells, neutrophils, and monocytes (Figure 8A and B). Expression 
levels of Gpx3 across these cell types are shown in Figure 8C.

We performed immunofluorescence experiments on brain tissues from the sham group and mice at days 4 and 14 post-TBI, 
and quantified the immunofluorescence intensity of Gpx3 (Figure 8D). This experiment revealed GPX3 expression and 
localization in the cortex after TBI. In the merged images, GPX3 largely co-localizes with IBA1-positive cells in the TBI 
group, indicating decreased GPX3 expression in microglia and macrophages following TBI (Figure 8E).
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Figure 6 Transcription Factor-Hub Gene Network and miRNA-Hub Gene Coregulatory Network. (A) Transcription Factor-Hub Gene Network. (B) The TF-hub gene 
network consists of the top 20 nodes ranked by betweenness values calculated using the CytoHubba plugin. The inner circle represents hub genes, while the outer circle 
represents TFs, with more yellow indicating higher betweenness values. (C) miRNA-Hub Gene Coregulatory Network. The inner circle represents hub miRNAs, with more 
yellow indicating higher betweenness values.
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Discussion
An increasing number of studies now confirm the link between TBI and PD. Research increasingly regards TBI not only 
as an acute injury but also as a chronic condition.41 TBI has been identified as a risk factor for Parkinson’s disease.10– 

12,42,43 Identifying the pathogenic factors linking TBI to PD is crucial for advancing clinical treatments for TBI and 
implementing effective preventive strategies for PD. Our study is the first to elucidate the critical role of GPX3 in 
traumatic brain injury (TBI)-associated Parkinson’s disease (PD), highlighting its potential as a novel therapeutic target.

In this study, we analyzed two microarray datasets from TBI and PD with bioinformatics methods, identifying 20 
common DEGs for TBI and PD using the GEO database. According to GO and KEGG analysis, the 912 DEGs for TBI 
were primarily enriched in pathways related to ribosomes, mitochondrial activation, amino acid metabolism, and 
neurodegenerative diseases. The 718 DEGs for PD were mainly enriched in neuronal activity, mitochondrial activation, 
immune cell infiltration and differentiation, and the PI3K-Akt signaling pathway. The mitochondrial activation pathway 
is enriched in the DEGs of both TBI and PD, with numerous studies confirming its role in PD pathogenesis.44 

Mitochondrial dysfunction is considered central to the mechanisms underlying both sporadic and familial PD. 
Observations from experimental models and human PD cases provide strong evidence of disrupted mitochondrial 
dynamics, bioenergetic deficits, inhibition of complex I in the electron transport chain (ETC), and increased reactive 
oxygen species (ROS).45–47

Additionally, by identifying co-expressed genes between TBI and PD, we found 10 commonly upregulated genes and 
10 commonly downregulated genes. The upregulated genes were primarily enriched in the hypoxia pathway, while the 
downregulated genes were mainly enriched in pathways related to hydrogen peroxide catabolism, metabolism, and 
cellular oxidant detoxification. The co-expressed genes are enriched in the hypoxia pathway and the hydrogen peroxide 
metabolic process, which are closely related. Hypoxic conditions affect cellular redox balance, leading to increased 
production of reactive oxygen species (ROS), among which hydrogen peroxide (H2O2) is a key ROS.48–52

Primary brain injury generates significant amounts of ROS in mitochondria.53 Excessive ROS leads to oxidative 
neuronal damage, contributing to several forms of neuronal cell death, including ferroptosis (42,43). Persistent ROS 
production drives neuroinflammation, which further damages the brain (44,45). Neuroinflammation increases blood-brain 
barrier (BBB) permeability, enabling immune cell infiltration in the ischemic brain. Cytokines produced during 
neuroinflammation, such as IL-1 and IL-6, exacerbate the inflammatory response.54,55 In TBI, external impact causes 
mechanical damage that elevates ROS levels at the injury site.56,57 Excessive ROS damages subcellular structures, 
particularly mitochondria, triggering inflammatory responses.56 These conditions severely impact the daily lives of 
patients, and no effective treatments are currently available.58

Subsequently, we conducted a PPI network analysis, visualized using Cytoscape, and identified key hub genes, 
including GPX3 and CXCR4. Transcription factors (TFs) contribute significantly to gene expression regulation. In this 
study, we used NetworkAnalyst 3.0 to identify transcription factors associated with hub genes. In the TF-gene interaction 
network, GPX3, MAFF, and CLDN15 exhibited extensive connections with other TFs, while WRNA1, ZFP37, and 
IKZF1 were the most active transcription factors. IKZF1 (Ikaros family zinc finger 1) is a zinc finger protein of the Ikaros 

Table 1 Candidate Drugs Predicted With the Common Hub Genes

Rank Score Name Description

1 −96.86 Necrostatin-1 RIPK inhibitor
2 −94.36 JTE-907 Cannabinoid receptor inverse agonist

3 −94 Rhapontin Apoptosis stimulant

4 −93.8 Rucaparib PARP inhibitor
5 −93.08 Nimetazepam GABA receptor agonist

6 −92.64 RHO-kinase-inhibitor-III[rockout] Rho associated kinase inhibitor

7 −92.35 HA-14-1 BCL inhibitor
8 −91.62 Liothyronine Thyroid hormone stimulant

9 −90.51 Alimemazine Histamine receptor agonist
10 −90.31 PD-173074 FGFR inhibitor
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family, playing a crucial role in the development and function of the immune system.59,60 It is widely recognized as an 
important transcription factor regulating the development, differentiation, and expression of immune-related genes in 
lymphocytes.61,62

Small noncoding RNAs known as miRNAs (21–25 nucleotides in length) can complement the 3′ UTR of target 
mRNAs, resulting in either mRNA degradation or translational inhibition.63 In the constructed mRNA-miRNA regula-
tory network, miR-548-3p, miR-653, miR-543, and miR-340 showed the highest average connectivity. These miRNAs 
are critical regulators in cancer and immune response pathways. miR-548-3p is primarily involved in cell cycle and 
immune regulation, with tumor-suppressive properties in cancer.64 miR-653 plays a key role in inflammation and 
immune modulation, particularly in autoimmune diseases and cancer.65 miR-543 controls tumor cell proliferation and 

Figure 7 Dataset Validation of Hub Genes. (A). Analysis of the relationship between hub genes and brain injuries, Parkinson’s disease, and other neurodegenerative diseases 
based on the Comparative Toxicogenomics Database (CTD). (B). Identification of the three hub genes using four algorithms (MCC, MNC, degree, and Betweenness) of the 
CytoHubba plugin in Cytoscape. (C). Expression of Gpx3 in the validation dataset GSE150696. (D). Expression of Cxcr4 genes in the validation dataset GSE150696. (E). 
Expression of Crebbp genes in the validation dataset GSE150696. (F). Expression of GPX3 genes in the validation dataset GSE155063. (G). Expression of CXCR4 genes in 
the validation dataset GSE155063. (H). Expression of CREBBP genes in the validation dataset GSE155063. 
Notes: *P < 0.05 Statistical analysis was performed using Student’s t-test.
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invasion by targeting cancer-related genes, with additional roles in cardiovascular and neurological diseases.66 miR-340 
functions as a tumor suppressor, regulating cancer cell proliferation and inflammatory responses, demonstrating protec-
tive effects in immune-related diseases.67 Collectively, these miRNAs contribute significantly to cell proliferation, 
immune response, and inflammation through targeted gene regulation.

Figure 8 Single-Cell Dataset Overview and Experimental Validation of Gpx3. (A). t-SNE clustering of cells reveals distinct cell populations based on transcriptome data. (B). 
Annotation of cell clusters into eight categories: endothelial cells, ependymal cells, macrophages, microglia, neuroglia, neutrophils, NK/T cells, and proliferating cells. (C). 
Expression levels of Gpx3 across cell populations, with color intensity indicating expression levels in each cell type. (D). Quantitative analysis of the relative fluorescence 
intensity of Gpx3 in brain sections from the sham-operated group and at days 4 and 14 post-TBI(n=3). Statistical significance was assessed using one-way ANOVA followed 
by Tukey’s post hoc test for multiple comparisons. Data are presented as mean ± SEM. *, p<0.05, **, p < 0.01 (E). Representative immunofluorescence images of brain 
sections from the sham-operated group and mice at days 4 and 14 post-TBI. DAPI (blue) marks nuclei, IBA1 (green) labels microglia, and Gpx3 (red) shows the distribution 
of Gpx3 protein. The dashed white line indicates the cortical boundary. 
Abbreviations: TBI, traumatic brain injury; PD, Parkinson’s disease; DEG, differentially expressed genes; PPI, protein-protein interaction; CTD, Comparative 
Toxicogenomics Database; CCI, controlled cortical impact; CNS, central nervous system; ENS, enteric nervous system; GI, gastrointestinal; GO, Gene Ontology; KEGG, 
Kyoto Encyclopedia of Genes and Genomes; ROS reactive oxygen species; BBB, blood-brain barrier; TF, Transcription factor.
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Using the cMAP database, we identified drugs with potential efficacy for treating TBI-related Parkinson’s disease, 
including Necrostatin-1, JTE-907, rhapontin. For validation, we further used the CTD database and an additional TBI and 
PD dataset from GEO, confirming that GPX3 also showed consistent results in the validation dataset. Finally, we 
analyzed a single-cell dataset from IBD samples for single-cell annotation analysis, finding that GPX3 and CXCR4 genes 
were mainly localized in microglia and macrophages, while CREBBP showed no specific distribution preference. In 
immunofluorescence validation in CCI model TBI mice, GPX3 expression was decreased in the cortex post-TBI, with 
predominant co-expression of GPX3 and IBA1. This confirmed the critical role of GPX3 in microglia and macrophages 
in the pathology of TBI.

GPX3 is the most promising gene in our study. Glutathione peroxidases are well-known antioxidant enzymes that 
catalyze the reduction of hydrogen peroxide or organic hydroperoxides using glutathione. Among the eight reported 
GPXs, GPX3 is a highly conserved protein and serves as the primary ROS scavenger in plasma.21,22,68 GPX3 is an 
important antioxidant enzyme in the human body, responsible for clearing ROS and protecting cells from oxidative 
damage. However, research on the role of GPX3 in TBI and PD is limited, presenting an avenue for future investigation. 
As a key antioxidant enzyme, GPX3 plays a central role in various antioxidant defense mechanisms.21 While basic 
research in recent years has highlighted the potential of GPX3 in various diseases, the translation of these findings into 
clinical applications remains limited.69 Currently, no suitable drugs or agonists are available that can directly induce 
GPX3 expression.21,69 Additionally, potential off-target effects of GPX3-based treatment strategies must not be 
overlooked.

We hypothesize that the increased incidence of PD following TBI may partly result from reduced GPX3 expression in 
injured brain tissue, causing elevated ROS levels that promote PD-related pathology. Our analyses strongly indicate the 
significant role of GPX3 and ROS in TBI-associated PD.

This study is limited by data and sample restrictions. Specifically, it relied solely on data obtained from TBI or PD 
patients, rather than from patients with both conditions. Additionally, we were unable to obtain brain tissue samples from 
PD patients with a history of TBI to verify the expression of key genes. Future studies should collect brain tissue samples 
from PD patients with a history of TBI to further investigate the relationship between TBI and PD. Furthermore, due to 
limited funding and experimental constraints, this study lacks functional experiments on GPX3 in TBI and PD, including 
the effects of GPX3 knockout or knockdown on these conditions, which diminishes the persuasiveness of the findings. 
We hope that future studies will address these limitations.

Conclusion
We evaluated transcriptomic data from TBI and PD patients, identifying common DEGs and hub genes shared by both 
conditions, and conducted a series of downstream analyses. Our findings suggest that the increased risk of PD following 
TBI may be driven by excessive ROS production and impaired clearance, with the GPX3 gene playing a key role in this 
process. These insights offer a novel perspective that may inform the prevention and treatment of TBI-related PD in the 
future.
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