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Abstract
In computer vision, the acquisition of sufficient labeled data
for training is often time-consuming. However, unlabeled
data are conveniently available. The key problem is to dis-
cover and incorporate those informative and confidently
predicted unlabeled data into the training set for improved
learning. In this paper, we discover such unlabeled data
by exploiting the locality property of the data. The local-
ity property means that with high probability one example
shares the same label with its near neighbors. Thus the
label of those informative unlabeled data may be learned
from their confidently predicted neighbors. In many com-
puter vision applications, each individual feature set may
not be sufficient by itself for the learning purpose. There-
fore, unlabeled data can not be included in the co-training
way. In addition, there are different types of feature sets
with very different information in computer vision that can
not be effectively combined and used within a single clas-
sifier. Our method combines the predictions from multiple
classifiers on different feature sets. Based on these predic-
tions, we discover informative unlabeled data with confi-
dent predictions by exploiting the locality property. We ap-
ply our learning framework to the segmentation of the fin-
gerspelled signs from an American Sign Language (ASL)
video sequence. The experimental results show that our
method improves the segmentation accuracy by including
the chosen unlabeled data.

1. Introduction
For many supervised learning algorithms in computer vi-
sion, the cost of acquiring labeled data is prohibitively high.
This “High Initial Expenses” issue is discussed and tackled
in [8] using the co-training method [2]. The assumptions in
co-training are i) each example has two redundant but not
completely correlated feature sets and ii) each feature set
would be sufficient for learning if enough data were avail-
able. Under these assumptions, the predictions of one clas-
sifier on new unlabeled examples are expected to generate
informative examples to enrich the training set of the other.

However, these formal assumptions may not hold in appli-
cations of high complexity and data dimensionality, such as
many computer vision applications.

A co-training algorithm using confidence-rated predic-
tions is proposed in [8] and applied to the task of automo-
bile detection in roadway surveillance video. The algorithm
uses Adaboost [5, 11] to train two separate classifiers on
two different feature sets, and assumes the margins of the
two classifiers are only weakly related. The key idea is to
add only those unlabeled examples which are confidently
labeled by one classifier to the training set of the other clas-
sifier. The experiments showed improved performance us-
ing this co-training algorithm compared to using labeled ex-
amples alone, and empirically demonstrated that even two
closely related classifiers can be co-trained effectively. An-
other algorithm that combines clustering and co-training to
enhance text classification is proposed in [10]. The algo-
rithm uses Support Vector Machines [4, 12] as predictors
on separate feature sets, with one trained using data from
the original feature space, the other one with new features
that are derived by clustering both labeled and unlabeled
data. However, in all these extensions of the co-training al-
gorithm, we assume that the individual feature set would
be sufficient for the learning purpose if enough data were
available. This assumption may not hold in many computer
vision applications. However, the spatio-temporal pattern
among data, which is common in computer vision, is not
well exploited. For instance, in the recognition of events
in video sequences, the label of one image frame is highly
related to the labels of its neighboring frames. So we can
utilize the spatio-temporal pattern among the unlabeled data
when combining labeled and unlabeled data in learning.

In this paper, we present a new learning framework to
utilize the unlabeled data which have some kind of spatio-
temporal locality property. The main idea is that the la-
bel of those informative unlabeled data may be discovered
through their confidently predicted neighbors. Including
into the training set these informative unlabeled data with
labels learned from neighbors improves prediction accuracy
of our classifiers. We also use multiple feature sets for each
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example. Each feature set has different capability and is not
sufficient by itself for the learning purpose. Thus, we train
the classifiers on these feature sets separately and combine
the results based on their prediction accuracy on a validation
set.

We apply this new learning framework to the segmen-
tation of the fingerspelled signs from an American Sign
Language (ASL) video sequence. The key idea is to apply
our classification method to a frame window of five, which
serve as a single example because the inter-frame changes
may reveal whether the sign is fingerspelling or not. Since
the video sequences have the property of temporal locality,
this new learning framework is well suited to exploit it.

The main contributions of this paper are: (1) a new learn-
ing framework for discovering informative unlabeled data
to improve learning by exploiting spatio-temporal pattern
among data; (2) extension of the co-training method to mul-
tiple feature sets using the boosting-like weighting.

2. Methodology
There are two levels of learning in our method. First, clas-
sification of the unlabeled data can be learned from the pre-
dictions from the classifiers based on different feature sets.
According to our framework, different types of classifiers
can be used. We combine the predictions from these classi-
fiers based on their respective prediction accuracy on a val-
idation data set in a boosting-like procedure. Second, the
data can themselves learn their labels from a weighted vot-
ing from their near neighbors since the locality property is
assumed.

The data are in four categories: training data, validation
data, unlabeled data and testing data. The validation data
are used to measure the prediction accuracy of each classi-
fier, and these measurements are then used to evaluate the
boosting-like weights for each classifier.

2.1. Learning Framework
For each unlabeled data set, we first combine the predic-
tions of classifiers based on their prediction accuracy on the
validation data. For this purpose, we use a boosting-like
method described below. Then we “smooth” the weighted
prediction using a discrete Gaussian kernel. Finally we se-
lect the examples that are most confidently labeled as posi-
tive or negative and add them into the training data. These
data may include some of the salt-and-pepper noise, which
are actually wrongly labeled (with high probability) by the
current classifier. So the classifiers can improve their perfor-
mance by including these data along with the correct labels.

Fig. 1 illustrates our learning framework. Here each
small box represents the prediction for an unlabeled exam-
ple. Our method can be applied to data where the locality
property exists.

unlabeled
data set

︸ ︷︷ ︸
classifiers

weighted
⇒

combination

Gaussian
⇒

smoothing

Sorting
⇒ ⇒ Add confident unlabeled examples

into the training set

Figure 1: Our learning framework

In the first pass we combine the predictions from differ-
ent classifiers using boosting-like weights. In the second
pass we smooth the result with a discrete Gaussian kernel.
Our aim is to learn an example’s label from its near neigh-
bors (the voting result from its neighbors may indicate a
possible prediction error in the salt-and-pepper data). Fi-
nally we include those confident unlabeled examples into
the training set and retrain the classifiers.

Let Li(X), i = 1, . . . , n denote the predictions of clas-
sifier i on data X and L(X) = (Li(X), i = 1, . . . , n). De-
note W and S as the boosting-like weighting and Gaussian
smoothing operators respectively (we will define these op-
erators in the following subsections). We define operators
F as:

F(X) = S(W(L(X))) (1)

We sort the unlabeled data uj ∈ U according to the value
ofF and include the p most confident positive examples and
n most confident negative examples into the training set.

After we re-train the classifier i = 1, . . . , n on the en-
riched training set, our final hypothesis H is:

H(X) = sign (F(X)) (2)

Fig. 2 is the pseudo-code description of our learning
framework.

2.2. Weighted Combination
Since we do not assume that each classifier on different fea-
ture sets is strong enough by itself for classification, we
need some voting mechanism to combine the predictions
from different classifiers. Voting classification algorithms,
such as Bagging and AdaBoost [3, 5, 9, 11], improve the
accuracy by combining the (weak) classifiers. An empirical
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1. Input parameters: standard deviation σ of discrete
Gaussian kernel

2. Train Classifier i, i = 1, . . . , n on feature set i

3. εi is the prediction error on validation data.
4. αi = 1

2 ln( 1−εi

εi
)/C

5. For each unlabeled set
6. Predict: L = L(x)
7. Weighted combination: W = W(L)
8. Gaussian smoothing S = W ∗Gσ

9. Sorting on S

10. Add confident unlabeled data to the training set
11. Re-train Classifier i, i = 1, . . . , n

12. Update εi and αi

13. EndFor
14. Output: Classifier i, εi and αi, i = 1, . . . , n

Figure 2: Pseudo-code of our learning framework

comparison of voting classification algorithms is given in
[1].

In our learning framework, since different feature sets
have different discriminative capabilities, we adopt the
boosting-like weighting of [11] for the separate classifiers.
Instead of evaluating the classifiers on the training set, we
keep a separate validation set for evaluation, which is more
accurate.

Suppose prediction error on the validation set for classi-
fier i, i = 1, . . . , n is εi, then the boosting-like weighting
operator W is defined as:

W =
n∑

i=1

αi × Li, (3)

where
αi =

1
2

ln(
1− εi

εi
)/C (4)

and C is a normalization factor such that
∑n

i=1 αi = 1.

2.3. Discover Informative Unlabeled Data
If we just add into the training set the unlabeled data which
are predicted with high confidence, they do not improve a
lot the prediction accuracy of the classifiers since they are
not informative. We tackle this problem of “informative”
unlabeled data by the idea of learning from their neighbors.
We assume that the data have spatio-temporal relationships,
particularly the locality property, i.e., the label of one ex-
ample is highly related to that of its neighbors. We ex-
ploit this locality property and label those informative but
not confidently predicted examples among non-informative

but confidently predicted examples. Thus, our method com-
bines the ideas from both classification and segmentation
since segmentation is not done on the original data; instead,
segmentation is applied to the weighted labels (or weighted
margins, if the predictions are margins).

Our method can find many applications as long as the
data has the locality property. Actually this locality prop-
erty has been well exploited in the compression schemes,
but not as well in the learning methods. The locality prop-
erty can be exploited to discover those informative but not
confidently predicted unlabeled data. Suppose one example
is not confidently predicted but most of its neighbors are
confidently predicted to belong to a specific class; we la-
bel this example with the same class because of the locality
property. Including such unlabeled examples will improve
the prediction accuracy of each classifier by enriching the
training data set.

Suppose we are doing a two-class classification problem
(class +1 and class -1). The prediction of one example can
be in the range of [−1,+1]. The closer the prediction to
+1, the more probable the example belongs to class +1,
and vice versa. We can use Gaussian smoothing to approx-
imately model the locality property as:

S(W ) = W ∗Gσ, (5)

where Gσ is a discrete Gaussian kernel with standard devi-
ation σ and ∗ is the convolution operator.

Here a discrete Gaussian kernel is used to express the lo-
cality property. We apply Gaussian smoothing to the predic-
tion results instead of the original data. The salt-and-pepper
data are examples wrongly labeled (with high probability)
by the current classifier. After smoothing, these errors are
corrected. So if we include those examples with the correct
labels into the training data, the new classifier will learn
from these errors and then improve its prediction accuracy.

After the predictions are smoothed with Gaussian ker-
nels, we select those confidently predicted examples for in-
clusion into the training set. First we sort the unlabeled ex-
amples according to the smoothed predictions. Then we
select the p most confident positive and n most negative ex-
amples and add them into the training set.

3. Segmenting fingerspelled signs from
an ASL video sequence

In American Sign Language (ASL) and other sign lan-
guages, signs such as names and other borrowings from
the spoken language, are expressed by fingerspelling [13].
In fingerspelling, the hand shapes correspond to the letters
of the alphabet. Thus, the recognition methods for finger-
spelling [6] are quite different from those used for other type
of signs. Therefore segmenting the fingerspelling phase
from the continuous signing phase in an ASL video is a
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Figure 3: (a, b) fingerspelling of “John” and the corresponding hand contour curvature. The changes of curvature (Euclidean distance)
between successive frames are: [2.2469, 1.6506, 1.8364, 1.6119]; (c, d) continuous sign “yesterday” and the corresponding hand contour
curvature. The changes are: [0.4863, 0.7447, 0.6425, 0.6404].

step that must be completed before we apply the recogni-
tion methods. This segmentation problem can be tackled
through a classification method. Given an ASL video se-
quence, we want to classify every frame as fingerspelling or
not.

Fig. 3(a) shows a five-frame sequence during a finger-
spelling phase (the word “John”). Fig. 3(c) shows the con-
tinuous signing “yesterday”. We notice that some discrim-
inative features are the styles of the inter-frame changes.
For example, more rapid movements of individual fingers
are generally found in fingerspelling. Given that the hand
shapes for letters may also be used in other types of signs,
the inclusion of dynamic information is essential. For ex-
ample, in Fig. 3(c), we can not tell whether a single frame
corresponds to the continuous sign “yesterday” or the fin-
gerspelling letter “a” (which has similar hand shape). We
know fingerspelling involves rapid movement of individual
fingers, which causes the rapid change of hand contours.
Since the consecutive five frames in Fig. 3(c) have little
change of the hand contours, we can conclude that it is for
the continuous sign “yesterday”. So in our learning method,
the features sets should encode both the static information
like the hand shape and the dynamic information like the

motion of hand.
We encode five consecutive frames as a single training

example to determine whether the middle frame is finger-
spelling or not. In our experiment, we track the movement
of the dominant hand and extract the hand contour using
Snakes [7]. We use the following two feature sets for our
learning framework.

Curvature of the hand contour in the middle frame
of a five-frame video segment. Let Cl

i = (xl
i, y

l
i), i =

1, . . . , 100 denote 100 equally spaced hand contour points
of frame l. The curvature Kl

i , i = 1, . . . , 100, is defined as:

Kl
i =

ẋl
iÿ

l
i − ẍl

iẏ
l
i

[(ẋl
i)2 + (ẏl

i)2]3/2
, (6)

where ẋl
i, ẏl

i, ẍl
i and ÿl

i are the discrete approximation of
the first and second order derivatives for contour point i on
frame l. The curvature function is obtained after arranging
the hand contour points in a clockwise order, always starting
from the same position of the hand.

Changes of curvature of the hand contour between
five consecutive frames (4 feature variables). Since point
correspondence of the hand contour between two succes-
sive frames are approximately maintained, the total change
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of curvature can be computed as the Euclidean distance be-
tween two curvatures.

dKl =

(
100∑

i=1

(
Kl+1

i −Kl
i

)2

)1/2

(7)

Thus, the two feature sets for a video segment of
five frames (l − 2, l − 1, l, l + 1, l + 2) are {(Kl

i , i =
1, . . . , 100), (dKl−2, dKl−1, dKl, dKl+1) }. The curva-
ture feature set K describes the static configuration of the
hand while the change dK describes the motion of hand.

Fig. 3(b,d) show the hand contour curvatures for
Fig. 3(a,c) respectively. We can see that curvature of fin-
gerspelling is quite different from that of continuous sign-
ing. This is generally the case since fingerspelling involve
a lot of individual finger movement, which results in more
curved contour. Another observation is that the changes of
curvature between successive frames are larger in finger-
spelling than in continuous signing. This result is caused by
the fast finger movement in fingerspelling.

However, we notice neither of these two feature sets is
strong enough by itself for a good classifier. These two
feature sets have different prediction accuracy and are not
tightly correlated to each other. So we use weighted combi-
nation of the predictions of the classifiers which are trained
on these two feature sets separately.

4. Experiments
We use Support Vector Machines (SVM) as the base classi-
fier on each feature set. A polynomial (degree = 3) kernel
is used. The standard deviation and support of the discrete
Gaussian kernel are 2 and 4 respectively in our experiments.
The ASL video data are from the National Center for Sign
Language and Gesture Resources at Boston University. In
our experiments, we use three labeled videos and choose
same number of positive examples and negative examples
as the original training data set. One labeled video is left
as the validation data set and one unlabeled video is used as
the unlabeled data set. We include 8 most postive unlabeled
examples and 8 most negative unlabeled examples into the
training set and retrain each classifier. We test our learning
framework on two separate labeled testing sets to show the
effectiveness of including the chosen unlabeled data. The
average length of each video sequence is 40 frames.

In experiment 1 (Fig. 4), the testing video includes one
fingerspelling phase (word “John” frames 8-15). In ex-
periment 2 (Fig. 5), the testing video includes two finger-
spelling phases (words “Mary” frames 8-16 and “John”
frames 24-33). Both figures show that after including the
chosen unlabeled sequence, the predictions in the final stage
get closer to true labels. We can also see that how the
classifier improves the prediction accuracy through learn-
ing from its neighbors (temporal locality property). For

example, in Fig. 4(d1), the weighted prediction of frame
11 is below zero (nonfingerfelling), which is not correct.
However the predictions of all its near neighbors are +1
(fingerspelling). After smoothing with Gaussian kernel in
Fig. 4(e1), the classifier corrects this frame as a finger-
spelling frame. A similar example can also be found in
frame 11 of Fig. 5(d1,e1). Those examples are wrongly
predicted by the weighted prediction. So including these
examples along with their correct labels will help improve
the classifiers.

In Table 1, we can see that after including the chosen un-
labeled examples, both the base classifiers and final classi-
fier improve the prediction accuracy. This shows the effec-
tiveness of our approach. We can also see that classifier 2
has higher prediction accuracy than classifier 1. In Table 2,
our learning method assigns higher weight to classifier 2
after including the unlabeled data. This shows that the un-
labeled data not only help improve the individual classifiers,
but also help assign more accurate weight to each base clas-
sifier. In Tables 3 and 4, the same experiments are done
without the smoothing step, that is, no locality property is
utilized. The results show that for experiment 2, the final
prediction accuracy does not improve with the inclusion of
unlabeled examples. This demonstrates that the utilization
of locality property is essential in our learning framework.

Table 1: Prediction Accuracy
Experiment # Classifier Classifier Final

(on K) (on dK)
1. w/o unlabeled data 0.606 0.818 0.758
1. w/ unlabeled data 0.788 0.939 0.879
2. w/o unlabeled data 0.500 0.725 0.625
2. w/ unlabeled data 0.525 0.800 0.925

Table 2: Weights for combination
Experiment # Classifier Classifier

(on K) (on dK)
1. w/o unlabeled data 0.633 0.367
1. w/ unlabeled data 0.567 0.463
2. w/o unlabeled data 0.602 0.398
2. w/ unlabeled data 0.332 0.668

Table 3: Prediction Accuracy (without smoothing)
Experiment # Classifier Classifier Final

(on K) (on dK)
1. w/o unlabeled data 0.606 0.818 0.606
1. w/ unlabeled data 0.788 0.909 0.909
2. w/o unlabeled data 0.500 0.725 0.500
2. w/ unlabeled data 0.500 0.750 0.500
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Figure 4: Experiment 1. y-axis: high(+1) denotes fingerspelling , low(-1) denotes continuous signing; x-axis: frames number 1-33.
(a) Labeled testing data with one fingerspelling phase (word “John” frames 8-15); (b0)-(e0) predictions of the SVM classifier based on
curvature, the SVM classifier based on curvature changes, weighted combination and Gaussian smoothing with only the training data;
(b1)-(e1) respective predictions after including the chosen unlabeled data

Table 4: Weights for combination (without smoothing)
Experiment # Classifier Classifier

(on K) (on dK)
1. w/o unlabeled data 0.633 0.367
1. w/ unlabeled data 0.500 0.500
2. w/o unlabeled data 0.602 0.398
2. w/ unlabeled data 0.602 0.398

5. Summary and Conclusions

The main idea in this paper is to discover those informative
but not confidently predicted unlabeled data by exploiting
the locality property of the data found in many computer
vision applications. Those informative unlabeled data learn
their labels through their neighbors and including those data
into the training set helps enrich the training set, and thus
improves the prediction accuracy of the final classifier. We
present a learning framework in this paper that utilize this
idea. This learning framework naturally extends the co-
training method to multiple feature sets without the assump-
tion that each feature set is sufficient for the learning pur-
pose. The experimental results show that the prediction ac-
curacy of the final classifier is improved by including the
chosen unlabeled data.

Our future work includes: 1) for the learning framework,
using confidence-rated base classifiers (If a classifier can
predict a confidence value, instead of just −1 and +1, then
the weighted combination will be more accurate); 2) for
the fingerspelling segmentation, including both hands in the
learning framework since ASL is usually performed by both
hands (dominant and non-dominant).
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