
1

Survey of Techniques for

Node Differential Privacy

Sofya Raskhodnikova
Penn State University,

on sabbatical at BU for 2013-2014 privacy year,
also visiting Harvard

Publishing information about graphs

Many types of data can be represented as graphs where
• nodes correspond to individuals
• edges capture relationships

• “Friendships” in online social network
• Financial transactions
• Email communication
• Health networks (of doctors and patients)
• Romantic relationships

2

Image source: American J. Sociology,

Bearman, Moody, Stovel

image source http://community.expressor-

software.com/blogs/mtarallo/36-extracting-data-

facebook-social-graph-expressor-tutorial.html

Privacy is a

big issue!

Differential privacy (for graph data)

Differential privacy [Dwork McSherry Nissim Smith 06]

An algorithm A is 𝝐-differentially private if

for all pairs of neighbors 𝑮, 𝑮′ and all sets of answers S:

𝑷𝒓 𝑨 𝑮 ∈ 𝑺 ≤ 𝒆𝝐 𝑷𝒓 𝑨 𝑮′ ∈ 𝑺

Graph G

A
queries

answers

)(
Government,

researchers,

businesses

(or)

malicious

adversary

3image source http://www.queticointernetmarketing.com/new-amazing-facebook-photo-mapper/

Trusted
curator

Users

Two variants of differential privacy for graphs

• Edge differential privacy

Two graphs are neighbors if they differ in one edge.

• Node differential privacy

Two graphs are neighbors if one can be obtained from the other
by deleting a node and its adjacent edges.

4

G: G′:

G: G′:

Differentially private analysis of graphs

5image source http://www.queticointernetmarketing.com/new-amazing-facebook-photo-mapper/

• Two conflicting goals: utility and privacy

– Impossible to get both in the worst case

• Want: differentially private algorithms that are
accurate on realistic graphs
– differentially private (for all graphs)

– accurate for a subclass of graphs

Graph G

A
queries

answers

)(
Government,

researchers,

businesses

(or)

malicious

adversary

Trusted
curator

Users

• Number of edges

• Counts of small subgraphs
(e.g., triangles, 𝒌-triangles, 𝒌-stars)

(If nodes have colors, node colors can be specified

in template graphs.)

• Degree distribution

Graph statistics

6

… …

fraction of nodes of degree d

Degree d

…
…

Edge differentially private algorithms pre-2013:

graph statistics and techniques
• number of triangles, MST cost [Nissim Raskhodnikova Smith 07]

– Smooth sensitivity
• degree distribution [Hay Rastogi Miklau Suciu 09, Hay Li Miklau Jensen 09,

Karwa Slavkovic 12, Kifer Lin 13]

– Global sensitivity and postprocessing
• small subgraph counts [Karwa Raskhodnikova Smith Yaroslavtsev 11]

– Smooth sensitivity; Propose-Test-Release [Dwork Lei 09]

• cuts
– Random projections, global sensitivity [Blocki Blum Datta Sheffet 12]

– Iterative updates [Hardt Rothblum 10, Gupta Roth Ullman 12]

• Kronecker graph model parameters [Mir Wright 12]

– Postprocessing of [KRSY’11]

7

Other definitions

Edge private against Bayesian adversary (weaker privacy)
• small subgraph counts [Rastogi Hay Miklau Suciu 09]

Node zero-knowledge private (stronger privacy than DP)
• average degree, distances to nearest connected, Eulerian,

cycle-free graphs (privacy only for bounded-degree graphs)
[Gehrke Lui Pass 12]

– Sublinear-time algorithms + global sensitivity

8

Today

New techniques [Blocki Blum Datta Sheffet 13, Kasiviswanathan Nissim

Raskhodnikova Smith 13, Chen Zhou 13, Raskhodnikova Smith]

– achieve node differential privacy

– give better edge differentially private algorithms

• Guarantees for resulting algorithms

– node differentially private for all graphs

– accurate for a subclass of graphs, which includes
• graphs with sublinear (not necessarily constant) degree bound

• graphs where the tail of the degree distribution is not too heavy

• dense graphs

– good performance in experiments on real graphs for simple
statistics

9

1. Truncation + smooth sensitivity [BBDS’13, KNRS’13]

– Generic reduction to privacy over bounded-degree graphs

– Fast

2. Lipschitz extensions [BBDS’13, KNRS’13]

– Releasing number of edges via max flow [KNRS’13]

– Releasing subgraph counts via linear programming [KNRS’13]

– Releasing degree distribution: via convex programming [RS]

– Slower, but more accurate

3. Recursive mechanism [CZ’13]

(can be viewed as an efficient construction of Lipschitz extensions)

– Releasing (generalization of) subgraph counts

– The same accuracy as (2), but slower

• Unifying idea: ``projections’’ on ``graphs’’ with low sensitivity

New Techniques

10

Basic question

How accurately

can an 𝝐-differentially private algorithm release f(G)?

11

Graph G

A
statistic f

approximation

to f(G)

)(
Government,

researchers,

businesses

(or)

malicious

adversary

Trusted
curator

Users

• Global sensitivity of a function 𝑓 is

• Examples:

 𝑓−(G) is the number of edges in G.

 𝑓△(G) is the number of triangles in G.

12

𝝏𝒇 = max
𝐧𝐨𝐝𝐞 𝐧𝐞𝐢𝐠𝐡𝐛𝐨𝐫𝑠 𝐺,𝐺′

𝑓 𝐺 − 𝑓 𝐺′

𝝏𝒇− = 𝑛.

𝝏𝒇△= 𝒏
𝟐

.

Challenge for node privacy: high sensitivity

• Global sensitivity of a function 𝑓 is

• Local sensitivity 𝑳𝑺𝒇(𝑮), max
𝐺′: 𝐧𝐞𝐢𝐠𝐡𝐛𝐨𝐫 of 𝐺

𝑓 𝐺 − 𝑓 𝐺′ , is also high.

• New measure of sensitivity [Chen Zhou 13]

Down sensitivity 𝑫𝑺𝒇(𝑮) is max
𝐺′:𝐬𝐮𝐛𝐠𝐫𝐚𝐩𝐡 𝐧𝐞𝐢𝐠𝐡𝐛𝐨𝐫 of 𝐺

𝑓 𝐺 − 𝑓 𝐺′ .

13

𝝏𝒇 = max
𝐧𝐨𝐝𝐞 𝐧𝐞𝐢𝐠𝐡𝐛𝐨𝐫𝑠 𝐺,𝐺′

𝑓 𝐺 − 𝑓 𝐺′

Challenge for node privacy: high sensitivity

Idea: project onto graphs

with low down sensitivity.

“Projections” on graphs of small degree [BBDS’13,KNRS’13]

Let 𝓖 = family of all graphs,

𝓖𝑑 = family of graphs of degree ≤ 𝑑.

Notation. 𝝏𝒇 = global sensitivity of 𝒇 over 𝓖.

𝝏𝒅𝒇 = global sensitivity of 𝒇 over 𝓖𝑑.

Observation. 𝝏𝒅𝒇 is low for many useful 𝑓.

Examples:

 𝝏𝒅𝒇− = 𝒅 (compare to 𝝏𝒇− = 𝒏)

 𝝏𝒅𝒇△ = 𝒅
𝟐

(compare to 𝝏𝒇△ = 𝒏
𝟐

)

Idea: ``Project’’ on graphs in 𝓖𝑑 for a carefully chosen d << n.
14

𝓖

𝓖𝑑

Goal: privacy for all graphs

15

Method 1

Truncation + local-sensitivity-

based frameworks

Method 1: reduction to privacy over 𝓖𝑑 [KNRS’13]

• Time(A) = Time(B) + O(m+n)

• Reduction works for all functions 𝑓

How it works: Truncation T(G) outputs G
with nodes of degree > 𝑑 removed.

• Answer queries on T(G) instead of G

16

𝓖

𝓖𝑑
low 𝝏𝒅𝒇

high 𝝏𝒇

𝑻

Input: Algorithm B that is node-DP over 𝓖𝑑
Output: Algorithm A that is node-DP over 𝓖,

has accuracy similar to B on “nice” graphs

 via local-sensitivity-based frameworks [NRS’07,Dwork Lei 09, KRSY’11]

T T(G)
G

S
bound ℓ on

𝑳𝑺𝑻(G)

A

𝝐

B

𝝐/ℓ

17

Method 2

Lipschitz extensions

Method 2: Lipschitz extensions [BBDS’13,KNRS’13]

• Release 𝑓′ via GS framework [DMNS’06]

• There exist Lipschitz extensions for all real-valued functions

• Lipschitz extensions can be computed efficiently for

– subgraph counts [KNRS’13]

– degree distribution [RS]

18

𝓖

𝓖𝑑
low 𝝏𝒅𝒇

high 𝝏𝒇

𝒇′ = 𝒇

𝝏𝒇′ = 𝝏𝒅𝒇

A function 𝑓′ is a Lipschitz extension

of 𝑓 from 𝓖𝑑 to 𝓖 if

𝑓′ agrees with 𝑓 on 𝓖𝑑 and

𝝏𝒇′ = 𝝏𝒅𝒇

Vector of real values

Lipschitz extension of 𝒇−: flow graph

For a graph G=(V, E), define flow graph of G:

Add edge (𝑢, 𝑣′) iff 𝑢, 𝑣 ∈ 𝐸.

𝒗𝐟𝐥𝐨𝐰(G) is the value of the maximum flow in this graph.

Lemma. 𝒗𝐟𝐥𝐨𝐰(G)/2 is a Lipschitz extension of 𝒇−.

19

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

𝑑
1

𝑑

Lipschitz extension of 𝒇−: flow graph

For a graph G=(V, E), define flow graph of G:

Add edge (𝑢, 𝑣′) iff 𝑢, 𝑣 ∈ 𝐸.

𝒗𝐟𝐥𝐨𝐰(G) is the value of the maximum flow in this graph.

Lemma. 𝒗𝐟𝐥𝐨𝐰(G)/2 is a Lipschitz extension of 𝒇−.

Proof: (1) 𝒗𝐟𝐥𝐨𝐰(G) = 𝟐𝒇−(G) for all G∈ 𝓖𝑑
(2) 𝝏 𝒗𝐟𝐥𝐨𝐰 = 2⋅𝝏𝒅𝒇−

20

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

𝑑 𝑑
1

deg 𝑣 / deg 𝑣 /
1/

Lipschitz extension of 𝒇−: flow graph

For a graph G=(V, E), define flow graph of G:

𝒗𝐟𝐥𝐨𝐰(G) is the value of the maximum flow in this graph.

Lemma. 𝒗𝐟𝐥𝐨𝐰(G)/2 is a Lipschitz extension of 𝒇−.

Proof: (1) 𝒗𝐟𝐥𝐨𝐰(G) = 𝟐𝒇−(G) for all G∈ 𝓖𝑑
(2) 𝝏 𝒗𝐟𝐥𝐨𝐰 = 2⋅𝝏𝒅𝒇− = 2𝒅

21

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

𝑑 𝑑
1

6'

𝑑 𝑑

6

For a graph G=([n], E), define LP with variables 𝑥𝑇 for all triangles 𝑇:

𝒗𝐋𝐏(G) is the value of LP.

Lemma. 𝒗𝐋𝐏(G) is a Lipschitz extension of 𝒇△.

• Computable in time 𝑶(𝒏 + 𝒇△ 𝑮) using [Plotkin Shmoys Tardos]

• If we use 𝜹 instead of 𝒅
𝟐

as a bound, get a function with GS 𝜹.

– It is a Lipschitz extension from a large set that includes 𝐺𝑑 .

• Can be generalized to other counting queries.

Lipschitz extensions via linear programs

22

Maximize

0 ≤ 𝑥𝑇 ≤ 1 for all triangles 𝑇

for all nodes 𝑣

𝑇=△ of 𝐺

𝑥𝑇

𝑇:𝑣∈𝑉(𝑇)

𝑥𝑇 ≤
𝒅

𝟐
= 𝝏𝒅𝒇△

23

Lipschitz extension for a

function that outputs a vector

Lipschitz extension of degree distribution
via convex programming [RS]

flow graph of G

Can we use 𝑓𝑣 as a proxy for degree of 𝑣?

Issue: max flow is not unique.

Want: unique flow that has low global sensitivity.

24

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

𝑑
1

𝑑

𝒇𝒗 = flow into
vertex 𝒗

Lipschitz extension of degree distribution
via convex programming [RS]

flow graph of G

• Let ℎ(𝑥) = 𝑥(2𝑑 − 𝑥).

Idea: maximize ∑𝑣ℎ(𝑓𝑣) instead of ∑𝑣𝑓𝑣 .

• Let 𝜙 be the flow maximizing ∑𝑣ℎ(𝑓𝑣),

and 𝑓∗ be the vector of 𝑠-out-flows in 𝜙.

• 𝑓∗ is unique, since ℎ is strictly concave.

• Poly-time computable (e.g., [Lee Rao Srivastava 13]).

25

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

𝑑
1

𝑑

𝒉(𝒙)

𝒙

𝒅

𝒅𝟐

𝒇𝒗 = flow into
vertex 𝒗

Lipschitz extension of degree distribution
via convex programming [RS]

𝜙 = argmax∑𝑣 ℎ(𝑓𝑣).

• If G∈ 𝓖𝑑, then 𝒇𝒗
∗= deg(𝒗) for all 𝒗,

since ℎ is strictly increasing on [0,𝑑].

• Lemma. ℓ𝟏 global sensitivity 𝝏𝒇∗ ≤ 𝟑𝒅.

26

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

𝑑
1

𝑑

𝒉 𝒙
= 𝒙(𝟐𝒅 − 𝒙)

𝒙

𝒅

𝒅𝟐

𝒇𝒗
∗ = flow into

vertex 𝒗

Lipschitz extension of degree distribution
via convex programming [RS]

Lemma. ℓ𝟏 global sensitivity 𝝏𝒇∗ ≤ 𝟑𝒅.

Proof sketch: Consider 𝑔 = 𝜙𝑛𝑒𝑤 − 𝜙𝑜𝑙𝑑.

𝑔 is a union of simple 𝑠-𝑡-paths and cycles of several types:
1. 𝑠-𝑡-paths and cycles using 𝑒𝑠.
2. 𝑠-𝑡-paths using 𝑒𝑡.
3. Cycles using 𝑒𝑡.
4. Remaining paths and cycles.

27

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

𝑑 𝑑
1

6'

𝑑 𝑑

6

𝒆𝒔

𝒆𝒕

Contribute ≤ 2𝑑 to 𝑓𝑛𝑒𝑤
∗ − 𝑓𝑜𝑙𝑑

∗
1

≤ 𝑑
0

Do not exist.
Use strict concavity of h

Releasing degree distribution: summary

𝜙 = argmax∑𝑣 ℎ(𝑓𝑣).

1. Construct flow graph of G.

2. Compute 𝑠-out-flows 𝑓∗.

3. Release vector 𝑓∗, with Lap
3𝑑

𝜖
per coordinate.

4. Use post-processing techniques by [Hay Rastogi Miklau Suciu 09, Hay Li

Miklau Jensen 09, Karwa Slavkovic 12, Kifer Lin 13] to remove some noise.

28

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

𝑑
1

𝑑

𝒉 𝒙
= 𝒙(𝟐𝒅 − 𝒙)

𝒙

𝒅

𝒅𝟐

𝒇𝒗
∗ = flow into

vertex 𝒗

1. Truncation + smooth sensitivity [BBDS’13, KNRS’13]

– Generic reduction to privacy over bounded-degree graphs

– Fast

2. Lipschitz extensions [BBDS’13, KNRS’13]

– Releasing number of edges via max flow [KNRS’13]

– Releasing subgraph counts via linear programming [KNRS’13]

– Releasing degree distribution: via convex programming [RS]

– Slower, but more accurate

3. Recursive mechanism [CZ’13]

(can be viewed as an efficient construction of Lipschitz extensions)

– Releasing (generalization of) subgraph counts

– The same accuracy as (2), but slower

Summary

29

30

Experimental evaluation

Experiments for the flow and LP method [Lu]

31

Graph # nodes # edges Max

degree

Time, secs

edges

Time, secs

𝚫s

CA-GrQc 5,242 28,992 81 0.02 7

CA-HepTh 9,877 51,996 65 0.68 0.5

CA-AstroPh 18,772 396,220 504 0.34 10,222

com-dblp-ungraph 317,080 2,099,732 343 2 2128

com-youtube-ungraph 1,134,890 5,975,248 28,754 9 94

Other experimental results

[Lu] showed that truncation is less accurate than flow and LP-
based methods.

[Chen Zhou 13] provide experimental evaluation on random and
real-world graphs.

• (Mostly) better accuracy than in [KRSY’11] for edge-DP algs.

• Longer running times than in flow- and LP-based methods
implemented by [Lu] for node-DP algorithms.

32

Conclusions

• We are close to having edge-private and node-private
algorithms that work well in practice for basic graph statistics.

• Interesting projection techniques that might be useful for
design of DP algorithms in other contexts.

33

Open questions

• New techniques:
– To which other queries do they apply?

• Specific queries:
– Releasing cuts with node-DP

– Releasing pairwise distances between nodes with DP

34

Open questions (continued)

• DP synthetic graphs

• Simultaneous release of answers to many queries

• What are the right notions of privacy for graph data?

• What are the right ways to state utility guarantees?
– Some proposals in [KRSY’13, KNRS’13, Chen Zhou 13]

• Social networks have node and edge attributes. What queries
are useful?

• Hypergraphs (that capture relationships such as “people
appearing on the same photo”)

35

