Survey of Techniques for Node Differential Privacy

Sofya Raskhodnikova Penn State University, on sabbatical at BU for 2013-2014 privacy year, also visiting Harvard

Publishing information about graphs

Many types of data can be represented as graphs where

- nodes correspond to individuals
- edges capture relationships
 - "Friendships" in online social network
 - Financial transactions
 - Email communication
 - Health networks (of doctors and patients)
 - Romantic relationships

image source http://community.expressorsoftware.com/blogs/mtarallo/36-extracting-datafacebook-social-graph-expressor-tutorial.html

Privacy is a big issue!

Image source: American J. Sociology, Bearman, Moody, Stovel

Differential privacy (for graph data)

Differential privacy [Dwork McSherry Nissim Smith 06] An algorithm A is ϵ -differentially private if for all pairs of **neighbors** G, G' and all sets of answers **S**: $Pr[A(G) \in S] \leq e^{\epsilon} Pr[A(G') \in S]$

Two variants of differential privacy for graphs

• Edge differential privacy

Two graphs are **neighbors** if they differ in **one edge**.

• Node differential privacy

Two graphs are **neighbors** if one can be obtained from the other by deleting *a node and its adjacent edges*.

- Two conflicting goals: utility and privacy
 - Impossible to get both in the worst case
- Want: differentially private algorithms that are accurate on realistic graphs
 - differentially private (for all graphs)
 - accurate for a subclass of graphs

Graph statistics

- Number of edges
- Counts of small subgraphs

(If nodes have colors, node colors can be specified in template graphs.)

• Degree distribution

Edge differentially private algorithms pre-2013:

graph statistics and techniques

- number of triangles, MST cost [Nissim Raskhodnikova Smith 07]
 - Smooth sensitivity
- **degree distribution** [Hay Rastogi Miklau Suciu 09, Hay Li Miklau Jensen 09, Karwa Slavkovic 12, Kifer Lin 13]
 - Global sensitivity and postprocessing
- small subgraph counts [Karwa Raskhodnikova Smith Yaroslavtsev 11]
 - Smooth sensitivity; Propose-Test-Release [Dwork Lei 09]
- cuts
 - Random projections, global sensitivity [Blocki Blum Datta Sheffet 12]
 - Iterative updates [Hardt Rothblum 10, Gupta Roth Ullman 12]
- Kronecker graph model parameters [Mir Wright 12]
 - Postprocessing of [KRSY'11]

Other definitions

Edge private against Bayesian adversary (*weaker* privacy)

• small subgraph counts [Rastogi Hay Miklau Suciu 09]

Node zero-knowledge private (*stronger* privacy than DP)

- average degree, distances to nearest connected, Eulerian, cycle-free graphs (privacy only for bounded-degree graphs) [Gehrke Lui Pass 12]
 - Sublinear-time algorithms + global sensitivity

New techniques [Blocki Blum Datta Sheffet 13, Kasiviswanathan Nissim Raskhodnikova Smith 13, Chen Zhou 13, Raskhodnikova Smith]

- achieve node differential privacy
- give better edge differentially private algorithms
- Guarantees for resulting algorithms
 - node differentially private for all graphs
 - accurate for a subclass of graphs, which includes
 - graphs with sublinear (not necessarily constant) degree bound
 - graphs where the tail of the degree distribution is not too heavy
 - dense graphs
 - good performance in experiments on real graphs for simple statistics

New Techniques

- 1. Truncation + smooth sensitivity [BBDS'13, KNRS'13]
- Generic reduction to privacy over bounded-degree graphs
- Fast
- **2.** Lipschitz extensions [BBDS'13, KNRS'13]
- Releasing number of edges via max flow [KNRS'13]
- Releasing subgraph counts via linear programming [KNRS'13]
- Releasing degree distribution: via convex programming [RS]
- Slower, but more accurate
- **3.** Recursive mechanism [CZ'13]

(can be viewed as an efficient construction of Lipschitz extensions)

- Releasing (generalization of) subgraph counts
- The same accuracy as (2), but slower
- Unifying idea: ``projections'' on ``graphs'' with low sensitivity

Basic question

How accurately

can an ϵ -differentially private algorithm release f(G)?

Challenge for node privacy: high sensitivity

Global sensitivity of a function f is

$$\partial f = \max_{(\text{node})\text{neighbors } G,G'} |f(G) - f(G')|$$

• Examples:

- \succ $f_{-}(G)$ is the number of edges in G.
- $\succ f_{\Delta}(G)$ is the number of triangles in G.

 $\partial f_{\perp} = n.$ $\partial f_{\perp} = \binom{n}{2}.$

Challenge for node privacy: high sensitivity

• **Global sensitivity** of a function *f* is

$$\partial f = \max_{(\text{node}) \text{neighbors } G, G'} |f(G) - f(G')|$$

- Local sensitivity $LS_f(G)$, $\max_{G': \text{ neighbor of } G} |f(G) f(G')|$, is also high.
- New measure of sensitivity [Chen Zhou 13]

Down sensitivity $DS_f(G)$ is $\max_{G': \text{subgraph neighbor of } G} |f(G) - f(G')|.$

"Projections" on graphs of small degree [BBDS'13,KNRS'13]

Let G = family of all graphs, G_d = family of graphs of degree $\leq d$. Notation. ∂f = global sensitivity of f over G. $\partial_d f$ = global sensitivity of f over G_d . Observation. $\partial_d f$ is low for many useful f. Examples:

$$\rightarrow \partial_d f_- = d$$
 (compare to $\partial f_- = n$)

 $\geq \partial_d f_{\Delta} = \binom{d}{2} \text{ (compare to } \partial f_{\Delta} = \binom{n}{2} \text{)}$

Idea: ``Project'' on graphs in \mathcal{G}_d for a carefully chosen d << n.

Method 1

Truncation + local-sensitivitybased frameworks

Method 1: reduction to privacy over G_d [KNRS'13]

Input: Algorithm B that is node-DP over G_d Output: Algorithm A that is node-DP over G, has accuracy similar to B on "nice" graphs

- Time(A) = Time(B) + O(m+n)
- Reduction works for all functions *f*

How it works: Truncation T(G) outputs G with nodes of degree > d removed.

• Answer queries on T(G) instead of G

via local-sensitivity-based frameworks [NRS'07,Dwork Lei 09, KRSY'11]

Method 2

Lipschitz extensions

Method 2: Lipschitz extensions [BBDS'13,KNRS'13]

• There exist Lipschitz extensions for all real-valued functions

Vector of real values

- Lipschitz extensions can be computed efficiently for
 - subgraph counts [KNRS'13]
 - degree distribution [RS] -

Lipschitz extension of **f**_: flow graph

For a graph G=(V, E), define **flow graph of G**:

 $v_{flow}(G)$ is the value of the maximum flow in this graph. Lemma. $v_{flow}(G)/2$ is a Lipschitz extension of f_- .

Lipschitz extension of **f**_: flow graph

For a graph G=(V, E), define **flow graph of G**:

 $v_{flow}(G)$ is the value of the maximum flow in this graph. Lemma. $v_{flow}(G)/2$ is a Lipschitz extension of f_- . Proof: (1) $v_{flow}(G) = 2f_-(G)$ for all $G \in G_d$ (2) $\partial v_{flow} = 2 \cdot \partial_d f_-$

Lipschitz extension of **f**_: flow graph

For a graph G=(V, E), define **flow graph of G**:

 $v_{flow}(G)$ is the value of the maximum flow in this graph. Lemma. $v_{flow}(G)/2$ is a Lipschitz extension of f_- . Proof: (1) $v_{flow}(G) = 2f_-(G)$ for all $G \in G_d$ (2) $\partial v_{flow} = 2 \cdot \partial_d f_- = 2d$

Lipschitz extensions via linear programs

For a graph G=([n], E), define LP with variables x_T for all triangles T:

Maximize
$$\sum_{T=\Delta \text{ of } G} x_T$$

 $0 \le x_T \le 1$ for all triangles T
 $\sum_{T: v \in V(T)} x_T \le \begin{pmatrix} d \\ 2 \end{pmatrix}$ for all nodes v
 $= \partial_d f_{\Delta}$

 $v_{\rm LP}(G)$ is the value of LP.

Lemma. $v_{LP}(G)$ is a Lipschitz extension of f_{Δ} .

- Computable in time $\tilde{O}(n + f_{\Delta}(G))$ using [Plotkin Shmoys Tardos]
- If we use δ instead of $\binom{d}{2}$ as a bound, get a function with GS δ .
 - It is a Lipschitz extension from a large set that includes G_d .
- Can be generalized to other counting queries.

Lipschitz extension for a

function that outputs a vector

Can we use f_v as a proxy for degree of v? *Issue:* max flow is not unique.

Want: unique flow that has low global sensitivity.

• Let
$$h(x) = x(2d - x)$$
.

Idea: maximize $\sum_{v} h(f_{v})$ instead of $\sum_{v} f_{v}$.

- Let ϕ be the flow maximizing $\sum_{v} h(f_v)$, and f^* be the vector of *s*-out-flows in ϕ .
- f^* is unique, since h is strictly concave.
- Poly-time computable (e.g., [Lee Rao Srivastava 13]).

X

h(x)

d

 d^2

- If G∈ G_d, then f^{*}_v = deg(v) for all v, since h is strictly increasing on [0,d].
- Lemma. ℓ_1 global sensitivity $\partial f^* \leq 3d$.

X

h(x)

 $d^2 \mathbf{I} = x(2d - x)$

d

Lemma. ℓ_1 global sensitivity $\partial f^* \leq 3d$.

Proof sketch: Consider $g = \phi_{new} - \phi_{old}$.

g is a union of simple s-t-paths and cycles of several types:

1. s-t-paths and cycles using e_s . Contribute $\leq 2d$ to $|f_{new}^* - f_{old}^*|_1$

Do not exist.

- *2. s*-*t*-paths using e_t .
- 3. Cycles using e_t .
- 4. Remaining paths and cycles.

Use strict concavity of h

 $\leq d$

Releasing degree distribution: summary

- 1. Construct flow graph of G.
- 2. Compute *s*-out-flows f^* .
- 3. Release vector f^* , with Lap $\left(\frac{3d}{\epsilon}\right)$ per coordinate.
- 4. Use post-processing techniques by [Hay Rastogi Miklau Suciu 09, Hay Li Miklau Jensen 09, Karwa Slavkovic 12, Kifer Lin 13] to remove some noise.

X

d

Summary

- 1. Truncation + smooth sensitivity [BBDS'13, KNRS'13]
- Generic reduction to privacy over bounded-degree graphs
- Fast
- **2.** Lipschitz extensions [BBDS'13, KNRS'13]
- Releasing number of edges via max flow [KNRS'13]
- Releasing subgraph counts via linear programming [KNRS'13]
- Releasing degree distribution: via convex programming [RS]
- Slower, but more accurate
- **3.** Recursive mechanism [CZ'13]

(can be viewed as an efficient construction of Lipschitz extensions)

- Releasing (generalization of) subgraph counts
- The same accuracy as (2), but slower

Experimental evaluation

Experiments for the flow and LP method [Lu]

	Graph	# nodes	# edges	Max degree	Time, secs # edges	Time, secs # Δs
-	CA-GrQc	5,242	28,992	81	0.02	7
-	CA-HepTh	9,877	51,996	65	0.68	0.5
	CA-AstroPh	18,772	396,220	504	0.34	10,222
	com-dblp-ungraph	317,080	2,099,732	343	2	2128
	com-youtube-ungraph	1,134,890	5,975,248	28,754	9	94

Other experimental results

[Lu] showed that truncation is less accurate than flow and LP-based methods.

[Chen Zhou 13] provide experimental evaluation on random and real-world graphs.

- (Mostly) better accuracy than in [KRSY'11] for edge-DP algs.
- Longer running times than in flow- and LP-based methods implemented by [Lu] for node-DP algorithms.

Conclusions

- We are close to having edge-private and node-private algorithms that work well in practice for basic graph statistics.
- Interesting projection techniques that might be useful for design of DP algorithms in other contexts.

Open questions

- New techniques:
 - To which other queries do they apply?
- Specific queries:
 - Releasing cuts with node-DP
 - Releasing pairwise distances between nodes with DP

Open questions (continued)

- DP synthetic graphs
- Simultaneous release of answers to many queries
- What are the right notions of privacy for graph data?
- What are the right ways to state utility guarantees?
 - Some proposals in [KRSY'13, KNRS'13, Chen Zhou 13]
- Social networks have node and edge attributes. What queries are useful?
- Hypergraphs (that capture relationships such as "people appearing on the same photo")