Survey of Techniques for
Node Differential Privacy

Sofya Raskhodnikova
Penn State University,
on sabbatical at BU for 2013-2014 privacy year,
also visiting Harvard

PENNOSTATE

W

Publishing information about graphs
Many types of data can be represented as graphs where

e nodes correspond to individuals
e edges capture relationships

* “Friendships” in online social network

 Financial transactions
 Email communication

* Health networks (of doctors and patients)

 Romantic relationships

ot
] ‘o:t/r
R ot &, !
SNET WS 194,
be *4 LY !
‘.}‘4—*-0-‘ 1 [=
Tt M ol s >/ IS
. -0
2 LN <2 0
e ST R s
- ¢ .
- ’5":0- LB
off 0*'7"rp.,_._ ‘*’\:
¢ PR
o LRkt

Privacy Is a
big issue!

Differential privacy (for graph data)

Graph G Trusted Users
curator Government,
" t queries researchers,
i A (< businesses

> answers (or)
!/ = malicious
—® - adversary

/Differential privacy [Dwork McSherry Nissim Smith 06]\

An algorithm A is e-differentially private if
for all pairs of neighbors G, G' and all sets of answers S:

\ Pr[A(G) € S| < e Pr|A(G') € S] Y,

Two variants of differential privacy for graphs

e Edge differential privacy
G: Lhtet G: Wty

/"\,/‘1\//55\1:\'\\ /‘]'i‘t\{:’#ﬂ r

L% S -/ij ok

-

Two zérlaphs are néfghbors if they difféf in one\edg\é.

 Node differential privacy

G ot it SRR LS

Two graphs are neighbors if one can be obtained from the other
by deleting a node and its adjacent edges.

Differentially private analysis of graphs

Graph G Trusted Users
curator Government,

researchers,

T 'I',i queries
b T:;/@\\/‘l’ffw t P~ < bUSInesseS
R g <N\ - > A

answers (or)

/!/ P > malicious
= F adversary
 Two conflicting goals: utility and privacy

— Impossible to get both in the worst case

e Want: differentially private algorithms that are

accurate on realistic graphs

— differentially private (for all graphs)
— accurate for a subclass of graphs

Graph statistics

e Number of edges

e Counts of small subgraphs & w %

(e.g., triangles, k-triangles, k-stars)

(If nodes have colors, node colors can be specified
in template graphs.) ’3{

* Degree distribution ‘fraction of nodes of degree d

-t

Degree d

Edge differentially private algorithms pre-2013:

graph statistics and techniques

e number of triangles, MIST cost [Nissim Raskhodnikova Smith 07]
— Smooth sensitivity

e degree distribution [Hay Rastogi Miklau Suciu 09, Hay Li Miklau Jensen 09,
Karwa Slavkovic 12, Kifer Lin 13]

— Global sensitivity and postprocessing
e small subgraph counts [Karwa Raskhodnikova Smith Yaroslavtsev 11]
— Smooth sensitivity; Propose-Test-Release [Dwork Lei 09]
e cuts
— Random projections, global sensitivity [Blocki Blum Datta Sheffet 12]
— lterative updates [Hardt Rothblum 10, Gupta Roth Ullman 12]
e Kronecker graph model parameters [Mir Wright 12]
— Postprocessing of [KRSY’11]

Other definitions

Edge private against Bayesian adversary (weaker privacy)
e small subgraph counts [Rastogi Hay Miklau Suciu 09]

Node zero-knowledge private (stronger privacy than DP)

e average degree, distances to nearest connected, Eulerian,

cycle-free graphs (privacy only for bounded-degree graphs)
[Gehrke Lui Pass 12]

— Sublinear-time algorithms + global sensitivity

Today

New techniques [Blocki Blum Datta Sheffet 13, Kasiviswanathan Nissim
Raskhodnikova Smith 13, Chen Zhou 13, Raskhodnikova Smith]

— achieve node differential privacy
— give better edge differentially private algorithms

e Guarantees for resulting algorithms
— node differentially private for all graphs

— accurate for a subclass of graphs, which includes
e graphs with sublinear (not necessarily constant) degree bound
e graphs where the tail of the degree distribution is not too heavy
e dense graphs

— good performance in experiments on real graphs for simple
statistics

New Techniques

1. Truncation + smooth sensitivity [BBDS'13, KNRS’13]
— Generic reduction to privacy over bounded-degree graphs
— Fast
2. Lipschitz extensions [BBDS'13, KNRS’13]
— Releasing number of edges via max flow [KNRS'13]
— Releasing subgraph counts via linear programming [KNRS'13]
— Releasing degree distribution: via convex programming [RS]
— Slower, but more accurate
3. Recursive mechanism [CZ'13]
(can be viewed as an efficient construction of Lipschitz extensions)
— Releasing (generalization of) subgraph counts
— The same accuracy as (2), but slower

e Unifying idea: projections’” on 'graphs’” with low sensitivity

10

Basic question

Graph G Trusted Users
curator Government,
“/'i'l‘—,o statistic f researchers,
/‘;\;—, :%::,kl,\f?it:__ A (‘) businesses
/\j:\,@{i{; \j:fi;\\\\///‘ g approximation (or)
/!/ X \\\\'E/::;\? to f(G) > malicious
s s adversary

How accurately
can an e-differentially private algorithm release f(G)?

Challenge for node privacy: high sensitivity

e Global sensitivity of a function f is

£ (G) = F (G

of =

(node)neighbors G,G’

e Examples:

> f_(G) is the number of edges in G.
» fA(G)is the number of triangles in G.

12

Challenge for node privacy: high sensitivity

e Global sensitivity of a function f is , PO, I
/ ‘/‘\‘1‘“1’ i "’\
of = max 1f(G) — f(G)| : \\ﬂ{i#ﬁ{’l\:{;j\
(node)neighbors G,G’ s ArtTTRRT
L W2 2
X A\ /3‘1

* Local sensitivity LS¢(G), max |f(G) — f(G")], is also high.

G': neighbor of G
e New measure of sensitivity [Chen Zhou 13]

D itivity DS (G) i G) — f(GHI.
own sensttivity f() is G’:subgraprlrllrau)a(ighbor ofGlf() f()

Idea: project onto graphs
with low down sensitivity.

W

13

“Projections” on graphs of small degree [BBDS'13,KNRS'13]

Let G = family of all graphs, G
G, = family of graphs of degree < d.
Notation. af = global sensitivity of f over G.

adf = global sensitivity of f over G,.
Observation. d;f is low for many useful f.
Examples:

» 0d4gf_=d (comparetodf_= n)
> 04f 5= (‘21) (compare to 3f , = ())

———Goal: privacy for all graprf<

Idea: "Project” on graphs in G, for a carefully chosen d << n.
14

Method 1

Truncation + local-sensitivity-
based frameworks

Method 1: reduction to privacy over §; [KNRS’13]

~

=
Input: Algorithm B that is node-DP over G4

Output: Algorithm A that is node-DP over g, § high af
has accuracy similar to B on “nice” graphs y

-
e Time(A) = Time(B) + O(m+n)
e Reduction works for all functions f

How it works: Truncation T(G) outputs G
with nodes of degree > d removed.

e Answer queries on T(G) instead of G
» via local-sensitivity-based frameworks [NRS’07,Dwork Lei 09, KRSY’11]

G A T6) |B
N, T ,
Q’E '4 ,’ , > / ’ 1
! E/l\ c N\ S bound £ on I3 / £
V€, L5;(G)

Method 2
Lipschitz extensions

Method 2: Lipschitz extensions [seps'13,kNrs'13]

A function ' is a Lipschitz extension
of f from G, to G if
> f' agrees with f on G; and
__»0f =04f J

* Release f’ via GS framework [DMNS'06]

high af
of = aaf

e There exist Lipschitz extensions for all real-valued functions

e Lipschitz extensions can be computed efficiently for

— subgraph counts [KNRS’13]
— degree distribution [RS]-

18

Lipschitz extension of f_: flow graph

For a graph G=(V, E), define flow graph of G:

Add edge (u,v) iff (u,v) € E. J
V10w (G) is the value of the maximum flow in this graph.
Lemma. vg,w(G)/2 is a Lipschitz extension of f_.

19

Lipschitz extension of f_: flow graph

For a graph G=(V, E), define flow graph of G:

Add edge (u,v) iff (u,v) € E. /
V10w (G) is the value of the maximum flow in this graph.
Lemma. vg,w(G)/2 is a Lipschitz extension of f_.
Proof: (1) vaow(G) =2f_(G) for all GE G4
(2) 0 Viiow =2:04f -

20

Lipschitz extension of f_: flow graph

For a graph G=(V, E), define flow graph of G:

V510w(G) is the value of the maximum flow in this graph.

Lemma. vg,w(G)/2 is a Lipschitz extension of f_.
Proof: (1) vaow(G) = 2f_(G) for all GE G4
(2) 0 vow =2:0qf_=2d

21

Lipschitz extensions via linear programs

For a graph G=([n], E), define LP with variables x; for all triangles T:

Maximize z Xt

T=Aof G
0<xr <1 for all triangles T
d
z Xy < <2\ for all nodes v
T:vEV(T) = 94f A J

vy p(G) is the value of LP.

Lemma. vy p(G) is a Lipschitz extension of f .

e Computableintime O(n + f,(G)) using [Plotkin Shmoys Tardos]

e |If we use 6 instead of (‘21) as a bound, get a function with GS 6.

— lItis a Lipschitz extension from a large set that includes G.
e (Can be generalized to other counting queries.

22

Lipschitz extension for a
function that outputs a vector

Lipschitz extension of degree distribution
via convex programming [rs]

vertex v flow graph of G | /

Can we use f,, as a proxy for degree of v?
Issue: max flow is not unique.
Want: unique flow that has low global sensitivity.

24

Lipschitz extension of degree distribution
via convex programming [rs

f, = flow into
vertex v flow graph of G Y,
e Let h(x) = x(2d — x). 2 h(x)
d

Idea: maximize Y, h(f,) instead of > ,,f,,.
e Let ¢ be the flow maximizing >, h(f,),

&-

and f* be the vector of s-out-flows in ¢.
e f"isunique, since h is strictly concave.
e Poly-time computable (e.g., [Lee Rao Srivastava 13]).

25

Lipschitz extension of degree distribution
via convex programming [rs

vertex v ¢ = argmax 2., h(fy). /

e If GE G 4, then f,= deg(v) for all v, h(x)

since h is strictly increasing on [0,d]. d = X)

* Lemma. £ global sensitivity df* < 3d.

X
| ; >

&-

26

Lipschitz extension of degree distribution

Vida Convex programming [Rs]

Lemma. ¥4 global sensitivity df™ < 3d.

Proof sketch: Consider g = ¢,,00 — Po14-

g is a union of simple s-t-paths and cycles of several types:

1. s-t-paths and cycles using e;. Contribute < 2d 10 |f)o, — fo1al1
Z. s-t-paths using e;. <d

3. Cycles using e;. 0

4. Remaining paths and cycles. Do not exist.

Use strict concavity of h

27

Releasing degree distribution: summary

ol

vertex v ¢ = argmax 2., h(fy). /

Construct flow graph of G. d?4 = x(2d — x)

Compute s-out-flows f*.

X
. . 3d . :
Release vector f*, with Lap(?) per coordinate. ™ . >
Use post-processing techniques by [Hay Rastogi Miklau Suciu 09, Hay Li

Miklau Jensen 09, Karwa Slavkovic 12, Kifer Lin 13] t0 remove some noise.

28

Summary

1. Truncation + smooth sensitivity [BBDS'13, KNRS’13]
— Generic reduction to privacy over bounded-degree graphs
— Fast
2. Lipschitz extensions [BBDS'13, KNRS’13]
— Releasing number of edges via max flow [KNRS'13]
— Releasing subgraph counts via linear programming [KNRS'13]
— Releasing degree distribution: via convex programming [RS]
— Slower, but more accurate
3. Recursive mechanism [CZ'13]
(can be viewed as an efficient construction of Lipschitz extensions)
— Releasing (generalization of) subgraph counts
— The same accuracy as (2), but slower

29

Experimental evaluation

Experiments for the flow and LP method [Lu]

o il e ol I

Number of Edges Number of Triangles
100°
g 10’ g 10%”
D D
L10'° o
3 T 10°-
e 1 s
E’ 1078° E’
8 8 10-0‘5_
= . b=
10
10-35_ | | | ' 10'1‘ , . | —
0. 50 0. 50 1 OO
Epsilon Epsilon
Graph # nodes | #edges Max Time, secs | Time, secs
deg ree | #edges # AS
CA-GrQc 5,242 28,992 0.02
CA-HepTh 9,877 51,996 65 0.68 0.5
CA-AstroPh 18,772 396,220 504 0.34 10,222
com-dblp-ungraph 317,080 2,099,732 343 2 2128
com-youtube-ungraph 1,134,890 5,975,248 28,754 9 94 31

Other experimental results

[Lu] showed that truncation is less accurate than flow and LP-
based methods.

[Chen Zhou 13] provide experimental evaluation on random and
real-world graphs.

e (Mostly) better accuracy than in [KRSY’11] for edge-DP algs.

e Longer running times than in flow- and LP-based methods
implemented by [Lu] for node-DP algorithms.

32

Conclusions

e We are close to having edge-private and node-private
algorithms that work well in practice for basic graph statistics.

e |nteresting projection techniques that might be useful for
design of DP algorithms in other contexts.

33

Open questions

e New techniques:
— To which other queries do they apply?
e Specific queries:
— Releasing cuts with node-DP
— Releasing pairwise distances between nodes with DP

34

Open questions (continued)

e DP synthetic graphs
e Simultaneous release of answers to many queries
e What are the right notions of privacy for graph data?

e What are the right ways to state utility guarantees?
— Some proposals in [KRSY’13, KNRS’13, Chen Zhou 13]

e Social networks have node and edge attributes. What queries
are useful?

e Hypergraphs (that capture relationships such as “people
appearing on the same photo”)

35

