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Abstract—High-resolution imaging provides a significant means
for accurate material modulus estimation and mechanical char-
acterization. Within the realm of in vivo soft tissue characteriza-
tion, particularly on small biological length scales such as arterial
atherosclerotic plaques, optical coherence tomography (OCT) of-
fers a desirable imaging modality with higher spatial resolution
and contrast of tissue as compared with intravascular ultrasound
(IVUS). Based on recent advances in OCT imaging and elastog-
raphy, we present a fully integrated system for tissue elasticity
reconstruction, and assess the benefits of OCT on the distribution
results of four representative tissue block models. We demonstrate
accuracy, with displacement residuals on the order of 10−6 mm
(more than 3 orders of magnitude less than average calculated
displacements), and high-resolution estimates, with the ability to
resolve inclusions of 0.15 mm diameter.

Keywords—Optical coherence tomography, Soft tissue,
Elasticity estimation, FEM, Regularization.

INTRODUCTION

Elasticity estimation is best summarized as the effort
to replace qualitative measures of elasticity with quantita-
tive diagnostic tools. For many specimens, this is challeng-
ing because of their inhomogeneous field data and unique
boundary conditions. The properties of biomaterials, for
instance, often rely on complete measurements of impor-
tant field information (i.e., displacement, stress, or strain).
Researchers have modeled a variety of biological tissues
in attempts to describe their mechanical behavior,7,20,21

yet knowledge of soft tissue material properties remains
limited.23 This is partly due to the substantial sensitivity of
elasticity values to particular specimens and testing setups
and to the enormous elastic variability and heterogeneity
of soft tissues—the elastic modulus of soft tissues spans
4 orders of magnitude.12 A better understanding of soft
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tissue elasticity, and a system for accurately and efficiently
predicting it, is therefore needed.

Imaging limitations and modality-specific differences
also make tissue elasticity reconstruction a challenge. Since
ultrasound-based tissue elastography for biomechanical
strain imaging was first developed,22 researchers have ex-
tended this technique to other imaging modalities, in hopes
of generating more accurate strain maps for their spe-
cific problems. In intravascular ultrasound (IVUS) con-
siderable effort has been invested in coronary arterial
elastography9,11,26 and today, IVUS elastography is the
only method clinically demonstrated for strain characteri-
zation in coronary lesions. IVUS elastography is, however,
limited to a spatial resolution of 200 µm for radial strain
(oriented along each A-line). This limitation strongly im-
pacts the characterization of potentially vulnerable lesions
with fibrous caps smaller than 200 µm. Intravascular optical
coherence tomography (OCT), an optical analog to IVUS,
overcomes this limitation and offers significantly higher
soft tissue contrast, overcoming the other major IVUS lim-
itation: low contrast between different tissues.18 Higher
spatial resolution offers greater sensitivity to smaller tissue
displacements, contributing to (i) the ability to resolve ma-
terial properties of small-scale biological structures, such as
the thin plaque cap, and (ii) the ability to obtain more data
points for each unknown tissue sample to be characterized.
Enhanced soft tissue contrast is beneficial in accurately
visualizing internal plaque morphology and in potentially
obtaining better prior information about tissue type. The
sacrifice associated with these OCT imaging improvements
is a reduced imaging depth. Imaging penetration within the
vessel wall is limited to 1.5 mm and confines tissue char-
acterization to the region of plaque most likely to rupture
and thrombosis. We have previously described the impact
of penetration depth on biomechanical characterization.4

In this paper, we build on our recent advances in optical
coherence elastography (OCE)3 by combining robust esti-
mates of tissue velocity fields with vascular elastic modulus
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FIGURE 1. OCT image simulation of an inclusion within a tissue block (left) and its corresponding full FE model, consisting of 3163
elements (right). The technique for developing OCT image simulations based on tissue models has been previously described.2 A
displacement load was imposed on the tissue block model and image simulation.

estimation. We present a linear perturbation Gauss–Newton
method for high-resolution modulus estimation and demon-
strate results from simulated tissue compression imaging
with time-domain OCE. High-resolution quantification of
vulnerable atherosclerotic plaque material properties would
allow the study of (i) the spatial distribution and magnitude
of stress concentrations, which have been shown to corre-
spond with regions where plaque rupture tends to occur,24

and (ii) the relationship between mechanical stresses on
vascular cells and features of vascular remodeling associ-
ated with atherogenesis.

METHODS

OCT Imaging and Elastography

Our methods for time-domain OCT imaging2,17,28 and
robust estimation of tissue velocity and strain fields have
been described previously.3 Robust velocity estimation is
accomplished by minimizing a variational energy func-
tional that contains side constraint terms, reflecting our prior
knowledge about tissue biomechanical behavior:

v̂(x, y) = arg min
v

{G(v(x, y))} = arg min
v

{aGD(v(x, y))

+ cGS(v(x, y)) + cGI(v(x, y))} (1)

In this expression the estimated velocity field v̂(x, y), which
is essentially analogous to a displacement field, minimizes
the weighted combination of three energy functions. The
first, GD, controls data fidelity, whereby minimizing this
term corresponds to simple cross-correlation coefficient
maximization. The second term, GS, imposes strain field
smoothness, while the final term, GI, exploits prior knowl-
edge that biological tissues are typically assumed incom-
pressible in the range of time scales relevant to elastography.
These terms together penalize velocity field estimates that
stray from these biomechanical conditions.

With previously described techniques,3 OCT images of
tissue blocks containing circular inclusions under uniaxial
compression were simulated (Fig. 1). In short, we generated
interference images by applying an exponential decay term
to the convolution between the coherent OCT point spread
function and the backscattering field. The distribution of
backscattering arises from the point scattering inherent to
a specimen’s morphological structure. In order to repli-
cate OCT backscattering fields commonly seen for arte-
rial tissue and inclusions (i.e., higher mean backscattering
in tissue relative to inclusion), we assigned backscattering
values at discrete points by selecting independent uniform
random variables with an empirically chosen variance of
10 for scatterers within the tissue block and of 2 for scat-
terers within the inclusion. Finally, the individual tissue
scatterers were displaced using displacement fields from
finite element modeling (FEM) of the tissue block, where a
0.15 mm displacement load was applied to the top surface
over five timesteps.

Axial (z-direction) velocity results using the above-
described variational energy technique were generated for
a series of simulated tissue blocks, where the size of
the inclusion and the elasticity modulus ratio (defined as
Einclusion/Ebackground) were varied (Fig. 2). Specifically, we
varied the inclusion diameter within the morphologically
accurate range of lipid pool and calcified nodule sizes
and the modulus ratio between two values, 5 for calcifi-
cation and 0.5 for lipid pool. This resulted in four models:
(a) 0.5 mm diameter calcified nodule, (b) 0.5 mm diame-
ter lipid pool, (c) 0.75 mm diameter calcified nodule, and
(d) 0.15 mm diameter calcified nodule.

Gauss–Newton Method for Elasticity Estimation

Progress has been made to more accurately depict
biological tissue in the form of constitutive models.
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FIGURE 2. Axial (z-direction) velocity distributions for four tissue block inclusion diameter/Eratio combinations: (A) 0.5 mm/5, (B)
0.5 mm/0.5, (C) 0.75 mm/5, (D) 0.15 mm/5. Results, which correspond to displacements in mm, were generated via a multi-resolution,
variational energy minimization technique designed for OCE.

Hyperelastic models, where strain energy functions are
used to capture the nonlinear nature of the stress–strain
curve at high strains, are the most commonly used. Fung
et al.13 proposed an exponential type and it has since been
applied to a wide array of tissue and modified to more
truthfully mimic experimental data, for instance, in work
by Holzapfel et al.15,16 to describe the “biphasic” circum-
ferential stress–strain relationship of arteries and to develop
the full constitutive relations for the mechanical response
of elastic arteries. Within the realm of elasticity estimation,
however, researchers depend on the simpler, more direct
linear elastic, isotropic model for two main reasons. First,
elasticity estimation is a discrete, numerical effort, where
elasticity values are assigned to individual elements based
on displacement maps generated via image processing. As
is evidenced by the description of the algorithm design (see
below), fitting more than a single parameter to each element
is not merely computationally rigorous but can be unattain-
able depending on the number of measured displacement

data. Second, unlike a more traditional nonlinear constitu-
tive model, elasticity estimation provides a comprehensive
map of material properties, albeit Young’s modulus values.
Researchers continue therefore to rely on the linear elastic,
isotropic model for elasticity estimation,1,25 so long as the
limits of the results of such estimation are understood as
a way to probe the elasticity of specimens under small,
quasi-static deformations.

Consider a body being displaced and that each point on
the boundary of the solid is specified either by a stress
or displacement. Let v(x, y, z) denote its displacement
field as a function of spatial coordinates x, y, z. The en-
suing constitutive stress–strain relationship, assuming an
incompressible, linear elastic solid is

σi j = −pδi j + 2µεi j , (2)

where σ i j is a component of the stress tensor, µ is the ma-
terial shear modulus, p is the pressure or hydrostatic stress,
and δi j is the Kronecker delta. We write this relationship
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in terms of an unknown shear modulus for convenience,
where later it can simply be related to the Young’s modulus
and Poisson’s ratio. Balancing linear momentum over each
part of the material gives the equilibrium equations,

∂σi j

∂x j
+ f j = 0, (3)

where f j , the body force per unit volume, is typically neg-
ligible. Because images are traditionally obtained in two-
dimensional cross-sections, we simplify the system by in-
voking the plane strain approximation. The result, after
combining Eqs. (2) and (3) under the plane strain approx-
imation, is the “plane strain inversion equation”27 for the
single unknown shear modulus, µ:

∂2(εxyµ)

∂y2
− ∂2(εxyµ)

∂x2
+ 2

∂2 (εxxµ)

∂x∂y
= 0. (4)

The derivation of the “plane strain inversion equation” was
presented to give the reader a formulaic understanding of
the problem, however, generally direct inversion for the
shear modulus is avoided for various reasons. First, solu-
tions are difficult to stabilize. Second, as shown in Eq. (4),
direct inversion requires explicit knowledge of the strain
field, which consequently demands differentiating an al-
ready noisy measured displacement field. Third, Eq. (4)
insists on µ being twice differentiable, thus placing continu-
ity restrictions on the modulus distribution and not allowing
jump changes in its value. Instead, the preferred strategy for
material property estimation is iterative inversion, where a
nonlinear least squares (NLS) problem is formulated by at-
tempting to minimize the difference between computed and
measured mechanical responses (i.e., displacement fields).

The resulting system, known as the Inverse Problem (IP)
in elastography, is written as

Given vc : R p → Rq , q ≥ p, solve

min
E∈R p

{
�(E) = 1

2
‖vc(E) − vm‖2

}
, (5)

where E is the Young’s modulus distribution, typically
a one-dimensional vector (p = 1) if concerned with an
isotropic distribution, vc(E) is the vector of computed dis-
placements based on a given E, and vm is the vector of
measured displacements, after scaling the OCE estimated
velocity results by the pixel sizes. We write the IP in terms of
the unknown distribution E because we are most interested
in inferring a direct elasticity measure, however, it can be
written with equal correctness in terms of the shear modu-
lus, as in the “plane strain inversion equation” derivation.
It should also be noted that displacement fields lie in one-,
two-, or three-dimensional space depending on the num-
ber of displacement components provided by elastography
experiments. In most cases, including our two-dimensional
experiments, we have axial (z) and lateral (y) displacements
to compare.

In practice, we solve the inverse problem via a gradient-
based numerical algorithm, where the residual (given in
Eq. (5)) acts as the driving force. Kallel and Bertrand19

proposed a linear perturbation Gauss–Newton method. By
perturbing the elasticity distribution a “sufficiently” small
amount, a gradient (or Jacobian) matrix can be constructed
with the subsequent, observed perturbations in displace-
ment and then used to direct the search toward the station-
ary point E

∗
. However, before arriving at a Newton update

equation for the modulus distribution, we write expressions
for the gradient and Hessian of �(E), the natural tools for
locating the zero gradient minima criteria:

∇�(E) = J (vc(E))T (vc(E) − vm) = J T
v (vc(E) − vm) ,

(6)

where Jv is the Jacobian of vc(E) with respect to E, and

∇2� (E) = J T
v Jv + ∂ Jvi

∂ E j
(E) [I ⊗ (vc (E) − vm)] , (7)

where I is the identity matrix and ⊗ is the Kronecker
delta. In accordance with common practice, we neglect
the second-order term in Eq. (7) based on the observation
that it is typically small relative to the first-order term and
is computationally expensive to calculate,29 yielding the
relationship

∇2� (E) ≈ J T
v Jv . (8)

This Hessian simplification is a distinguishing character-
istic of the Gauss–Newton method from other Newton’s
methods, and we elaborate on the ensuing limitations in
the following section; however, suffice it to say the re-
duction yields a symmetric and positive-definite Hessian,
so long as Jv is not singular, and thus a more solvable
system.

Based on the above-mentioned strategy and assump-
tions, the final Newton update equation for the root direction
of elastic modulus becomes

�E = − [∇2� (E)
]−1 ∇� (E)

= − [
J T

v Jv
]−1 [

J T
v (vc (E) − vm)

]
k (9)

As already noted, we approximate the Jacobian with the
displacement information gathered by discretely perturbing
the elasticity distribution because an explicit expression for
vc(E) is not easily known. Mathematically, this is a linear
perturbation written in finite difference scheme: suppose
we have a function F(x) = ( f1, . . . , fn)T , then,

J (x)i j = ∂ fi

∂x j
(x) ≈ fi (x j + ε|x j |e j ) − fi (x j )

ε|x j | (10)

for “sufficiently” small perturbation ε, where e j is the unit
basis vector in the jth direction.
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FIGURE 3. Flowchart of a Gauss–Newton method-based reconstruction algorithm. With an initial guess of the elasticity distribution,
the algorithm estimates the gradients necessary to direct it to a solution by perturbing elasticity distributions.

Regularization Scheme

Inverse problems, especially when in the presence of
noisy data, often yield ill-posed systems, thus requiring
regularization schemes to stabilize and identify unique so-
lutions. As a result, we equipped Eq. (5) with a Tikhonov
regularization term, so that the objective of the Gauss–
Newton method is not only to minimize the original data
fidelity term but a linear combination of it and a mod-
ulus distribution smoothing term. The discrete system of
equations making up the IP now become

Given vc : R p → Rq , q ≥ p, solve

min
E∈R p

{
�(E) = 1

2

∥∥vc(E) − vm

∥∥2
2 + λ

2

∥∥L E
∥∥2

2

}
, (11)

where λ is a weighting factor and ‖L E‖2
2 is the regulariza-

tion term and a function of the regularized solution, E. This
latter term is sometimes referred to as the discrete smooth-
ing norm because the matrix L usually acts as a smoothing
operator on the solution field.14 Choice of L depends on
the desired smoothing effect and includes, but is not ex-
clusive to, identity matrices, weighted diagonal matrices,
and discrete approximations for derivative and Laplacian
operators.

Without going into extraneous detail, it should be noted
that inclusion of a Tikhonov regularization term serves to
augment the diagonal terms of the Hessian matrix (J T

v Jv )
via addition by the positive-definite, symmetric matrix LT L.
Recall that an ill-conditioned Hessian, one that is riddled
with clusters of small singular values making its columns
numerically linearly dependent, is the root of an ill-posed
problem because, as Eq. (9) illustrates, it is the term being
inverted. Hence, we can infer that boosting the diagonal of
the Hessian also boosts its small singular values, thus pro-
ducing a more well-posed system. This is especially impor-
tant for IPs of this genre where the Hessian is abridged. Ad-
ditionally, that second-order term shown in Eq. (7), which is
neglected, becomes increasingly important as one deviates
farther from the solution, and this is a primary reason why

many are so concerned with keeping initial guesses as close
as possible to the actual solution.

Algorithm Design

A commercially available finite element software pack-
age ADINA (Watertown, MA) was employed to solve for
the model displacements based on prescribed initial dis-
placements, boundary conditions, model geometry, and
material properties. In addition, an all-inclusive software
program, tailored to automatically interface with ADINA,
linearly interpolate and mesh OCT data with FEM data, and
perform the iterative modulus estimation was developed. A
detailed view of the modulus estimation (Gauss–Newton)
algorithm is depicted in flowchart form (Fig. 3).

Model Description

Based on the four OCT models of varied inclusion
diameter/Eratio combination and their corresponding OCE
velocity results, elasticity reconstruction distributions were
generated. First, full FE models of the soft tissue rectangu-
lar blocks were generated (as shown in Fig. 1). All models
satisfy the equilibrium equations for incompressible, linear
elastic solids undergoing small, quasi-static deformations
and the plane strain assumption. The models were meshed
with nine-node quadrilateral elements and, for each dis-
crete element, a Young’s modulus (E) and Poisson’s ratio
(ν = 0.499) were assigned. Next, in order to alleviate the
computational intensity of the problem, we reduced the
number of unknown elasticity values by coarsening
the meshes of the full FE models, taking care of course
not to jeopardize the high resolution capability of OCT.
Specifically, the full finite element model (shown in Fig. 1)
is composed of 12,855 global nodes and 3163 elements,
far too many for making estimation a reasonable endeavor
and unnecessary for making biomechanical conclusions.
Additionally, OCE velocity results were generated for only
a central subsection of the full FE model, i.e., the region of
interest. This explains why the axes of the velocity distri-
bution results (Fig. 2) do not begin at 0 and do not span the
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FIGURE 4. The L-curve result for Eratio = 5 and 0.5 mm inclu-
sion when log (data fidelity term) is plotted against log (regu-
larization term). The plot indicates that data fidelity and regu-
larization are optimally balanced when λ lies between 4 × 10−6

and 7 × 10−6 (arrow).

length of the full model. As a result of these two details,
we were left with a smaller and more manageable subset
of unknowns, from the full 3163 elements to 200 elastic-
ity unknowns for the 0.5 mm inclusion, 262 unknowns for
the 0.75 mm inclusion, and 203 unknowns for the 0.15 mm
inclusion.

Based on these working finite element models, nodal
displacement values were calculated and subsequently in-
terpolated onto the OCT image grid in order to compare
with the measured OCE velocity data. Then, in order to
compute �(E), the OCE velocities, which were obtained in
pixel sizes, were corrected via OCT resolution to give the
realistic displacement measurements of the specimen under
investigation. Axial (z-direction) and lateral (y-direction)
pixel sizes for our OCT images were 1 µm and 25 µm,
respectively.

In summary, while the unknown elasticity values re-
mained in the finite element model grid, the displacements
were mapped onto the OCT image grid. This is not sur-
prising because while the FE models govern the number of
unknowns in the problem, the solution is always limited by
the number of measured data points, in this case, the OCE
velocity results.

RESULTS

Empirical L-curve

Our first task was to optimize the regularization weight-
ing factor in order to properly balance data fidelity and
smoothing effects. We chose to solve this nontrivial prob-
lem empirically by constructing an L-curve, a log–log plot
of the data fidelity term versus the smoothing term. For
the regularization matrix L, we constructed piece-wise,

first-order derivative operators, applied to the elements of
each region (background and inclusion) distinctly. The high
soft tissue contrast, evident from the OCT images (Fig. 1),
indicated a change in the tissue type between background
and inclusion. This allowed us to qualitatively decouple
the material regions and implicitly build material bound-
aries within the regularization matrix. With other imaging
modalities that lack a priori tissue material discernment,
this would be relatively difficult. Instead, smoothing op-
erators would be applied over either the entire model or
speculated regions of different tissue, thus most likely re-
quiring more iterations or several attempts at the elasticity
distribution before converging on an accurate solution.

According to the L-curve selection criterion, λ is the
value that maximizes the curvature of this typically L-
shaped curve. We found the ideal range of λ for a model
with Eratio = 5 and a 0.5 mm inclusion between 4 × 10−6

and 7 × 10−6 based on this empirical method (Fig. 4). Val-
ues of this magnitude confirm the presence of noise in the
velocity data, as predicted; noise-free, or essentially noise-
free, data would yield much smaller values of λ in order to
grant more fidelity to the data.

Modulus Distribution Results

OCE results for four different tissue models were ob-
tained (Table 1), and their corresponding modulus distri-
butions were estimated via our Gauss–Newton method-
based software. Elasticity estimates were accurate and
smooth (Fig. 5). Furthermore, the corresponding displace-
ment errors (between target and calculated displacement
fields) confirmed convergence, as their values were more
than 3 orders of magnitude less than the smallest model
displacements.

Elasticity maps from previous estimation work10,19

showed somewhat limited ability to resolve tissue inclu-
sions on the order of 1–2 cm in size based on radio fre-
quency (RF) ultrasonic echo elastography images. Here,
with OCT elastograms, we demonstrate successful esti-
mation on a myriad of examples, notably of inclusion
diameters ranging from 0.75 mm to as small as 0.15 mm.

TABLE 1. Summary of the four elasticity models, correspond-
ing estimate errors, and required iteration numbers. The
estimate errors are root mean squared displacement errors
normalized by the number of displacement data points in the

OCT image grid, calculated as RMS error = 1
N

√
N∑
i

|vc − vm|2i .

Inclusion RMS
diameter error

Model (mm) Eratio (mm) Iterations

A 0.5 5.0 2.16 × 10−6 10
B 0.5 0.5 2.24 × 10−6 15
C 0.75 5.0 1.89 × 10−6 10
D 0.15 5.0 2.30 × 10−6 19
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FIGURE 5. Elastic modulus distribution results for the following tissue block inclusion diameter/Eratio combinations: (A) 0.5 mm/5,
(B) 0.5 mm/0.5, (C) 0.75 mm/5, (D) 0.15 mm/5. Estimates were generated by applying the Gauss–Newton method software to corre-
sponding OCE velocity estimates. The modulus results in all four cases corresponded to minimal errors in target vs. converged
displacement fields. Converged results for all three models that reflect tissue blocks incorporating different sized calcified nodules
(Models (A), (C), (D)) confirmed inclusion modulus values of approximately 500 Pa, while the results for Model (B), the sole simulation
involving lipid pool, confirmed a lower modulus value than background (∼50 Pa).

Finally, an initialization experiment was done where the
initial elasticity “guesses” were varied up to 100% of the ap-
proximate target values. The resulting convergence curves
showed parallel and typical trends in the reduction of the
displacement residual, indicating that accurate convergent
estimates were not very dependent on the initial guess, yet,
as expected, speed of convergence could be accelerated
with a close initial value (Fig. 6).

CONCLUSIONS

The elasticity maps generated via OCT elastograms
show promise for material property estimation of soft tis-
sue and, in particular, of small length scale biological
structures such as atherosclerotic plaques. This example
is of great interest because of the strong dependence of

critical cardiovascular events on the biomechanical state of
plaques. Plaque rupture was postulated and later confirmed
to be a nearly essential precursor to cardiac events, such
as infarction.6,8 Furthermore, high circumferential stress
concentrations within plaques were found to correspond to
fissure prone regions.5,24 Therefore, the ability to quantify
vulnerable plaque materials, such as those of thin fibrous
caps partitioning large, compliant lipid pools from vessel
lumens, would be medically beneficial.

OCT is an invasive imaging technique with high spatial
resolution and thus the ability to visualize structures on the
size scale of thin fibrous caps. As a result, it is well suited as
a scaffold for in vivo tissue elasticity estimation. In previous
work,10,19 elasticity estimates based on traditional imaging
modalities have been limited by spatial resolution. In this
work, we have developed a fully integrated system based on
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FIGURE 6. By varying the initial values of elasticity inputted
into the algorithm and tracking the root mean squared dis-
placement error, the robustness of the data and algorithm can
be assessed. Constant elasticity values, differing by an in-
creasing amount from the target distribution, were used to ini-
tialize the estimation algorithm. Typical convergence patterns
and well-conditioned behavior were observed for initial values
up to ±100% of the target modulus values.

OCT imaging, generated simulated soft tissue elastograms
for a variety of tissue block with inclusion examples, and
finally estimated corresponding elasticity fields. This is an
important step toward gaining quantitative elasticity infor-
mation from, for instance, in vivo OCT images of coronary
arteries (Fig. 7). The results suggest a promising future for
OCT-based material property estimation, with converged
displacement residuals on the order of 10−6 mm, or more

FIGURE 7. A rendering of a coronary artery network, where the
insets signify various components of our OCT-based elasticity
reconstruction method: From static in vivo OCT images to FE
models and finally to the estimated elasticity distributions.

than 3 orders of magnitude less than average calculated
displacements, and the ability to resolve the elasticity of
very fine structures.

Future work includes quantifying the effects of image-
based boundary condition and other parameter uncertain-
ties on the elasticity results. Additionally, in the course of
developing an OCT-based system for in vivo soft tissue
characterization, we are currently obtaining velocity and
elasticity estimates of ex vivo tissue specimens, in particular
of aortic tissue.

ACKNOWLEDGMENTS

We thank Professor Roger D. Kamm for stimulating
discussions and Anna Engstrom for help with the artwork.
This research was supported by the National Institutes of
Health, contract R01-HL70039.

REFERENCES

1Baldewsing, R. A., C. L. de Korte, J. A. Schaar, F. Mastik, and
A. F. W. van der Steen. Finite element modeling and intravas-
cular ultrasound elastography of vulnerable plaques: Parameter
variation. Ultrasonics 42:723–729, 2004.

2Bouma, B. E., and G. J. Tearney. Power-efficient nonrecipro-
cal interferometer and linear-scanning fiber-optic catheter for
optical coherence tomography. Opt. Lett. 24:531–533, 1999.

3Chan, R. C., A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N.
Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad,
and B. E. Bouma. OCT-based arterial elastography: Robust esti-
mation exploiting tissue biomechanics. Opt. Express 12:4558–
4572, 2004.

4Chau, A. H., R. C. Chan, M. Shishkov, B. MacNeill, N. Iftima,
G. J. Tearney, R. D. Kamm, B. E. Bouma, and M. R. Kaazempur-
Mofrad. Mechanical analysis of atherosclerotic plaques based
on optical coherence tomography. Ann. Biomed. Eng. 32:1494–
1503, 2004.

5Cheng, G. C., H. M. Loree, R. D. Kamm, M. C. Fishbein, and
R. T. Lee. Distribution of circumferential stress in ruptured
and stable atherosclerotic lesions. A structural analysis with
histopathological correlation. Circulation 87:1179–1187, 1993.

6Constantinides, P. Plaque fissure in human coronary thrombosis.
J. Atheroscler. Res. 6:1–17, 1966.

7Costa, K. D., J. W. Holmes, and A. D. McCulloch. Modeling car-
diac mechanical properties in three dimensions. Philos. Trans.
R. Soc. Lond. A. 359:1233–1250, 2001.

8Davies, M. J., and T. Thomas. The pathological basis and mi-
croanatomy of occlusive thrombus formation in human coronary
arteries. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 294:225–229,
1981.

9de Korte, C. L., A. F. W. van der Steen, E. I. Céspedes, G.
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